Metamath Proof Explorer


Theorem cdlemn11a

Description: Part of proof of Lemma N of Crawley p. 121 line 37. (Contributed by NM, 27-Feb-2014)

Ref Expression
Hypotheses cdlemn11a.b 𝐵 = ( Base ‘ 𝐾 )
cdlemn11a.l = ( le ‘ 𝐾 )
cdlemn11a.j = ( join ‘ 𝐾 )
cdlemn11a.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemn11a.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemn11a.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11a.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
cdlemn11a.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11a.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11a.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11a.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11a.J 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11a.d + = ( +g𝑈 )
cdlemn11a.s = ( LSSum ‘ 𝑈 )
cdlemn11a.f 𝐹 = ( 𝑇 ( 𝑃 ) = 𝑄 )
cdlemn11a.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑁 )
Assertion cdlemn11a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ ∈ ( 𝐽𝑁 ) )

Proof

Step Hyp Ref Expression
1 cdlemn11a.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemn11a.l = ( le ‘ 𝐾 )
3 cdlemn11a.j = ( join ‘ 𝐾 )
4 cdlemn11a.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemn11a.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemn11a.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemn11a.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
8 cdlemn11a.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
9 cdlemn11a.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
10 cdlemn11a.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
11 cdlemn11a.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
12 cdlemn11a.J 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
13 cdlemn11a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
14 cdlemn11a.d + = ( +g𝑈 )
15 cdlemn11a.s = ( LSSum ‘ 𝑈 )
16 cdlemn11a.f 𝐹 = ( 𝑇 ( 𝑃 ) = 𝑄 )
17 cdlemn11a.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑁 )
18 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
19 2 4 5 6 lhpocnel2 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
20 19 3ad2ant1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
21 simp22 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) )
22 2 4 5 8 17 ltrniotacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) → 𝐺𝑇 )
23 18 20 21 22 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → 𝐺𝑇 )
24 fvresi ( 𝐺𝑇 → ( ( I ↾ 𝑇 ) ‘ 𝐺 ) = 𝐺 )
25 23 24 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( ( I ↾ 𝑇 ) ‘ 𝐺 ) = 𝐺 )
26 25 eqcomd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → 𝐺 = ( ( I ↾ 𝑇 ) ‘ 𝐺 ) )
27 5 8 10 tendoidcl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( I ↾ 𝑇 ) ∈ 𝐸 )
28 27 3ad2ant1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( I ↾ 𝑇 ) ∈ 𝐸 )
29 riotaex ( 𝑇 ( 𝑃 ) = 𝑁 ) ∈ V
30 17 29 eqeltri 𝐺 ∈ V
31 8 fvexi 𝑇 ∈ V
32 resiexg ( 𝑇 ∈ V → ( I ↾ 𝑇 ) ∈ V )
33 31 32 ax-mp ( I ↾ 𝑇 ) ∈ V
34 2 4 5 6 8 10 12 17 30 33 dicopelval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) → ( ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ ∈ ( 𝐽𝑁 ) ↔ ( 𝐺 = ( ( I ↾ 𝑇 ) ‘ 𝐺 ) ∧ ( I ↾ 𝑇 ) ∈ 𝐸 ) ) )
35 18 21 34 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ ∈ ( 𝐽𝑁 ) ↔ ( 𝐺 = ( ( I ↾ 𝑇 ) ‘ 𝐺 ) ∧ ( I ↾ 𝑇 ) ∈ 𝐸 ) ) )
36 26 28 35 mpbir2and ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ ∈ ( 𝐽𝑁 ) )