Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemn11a.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemn11a.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemn11a.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemn11a.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemn11a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemn11a.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemn11a.o |
⊢ 𝑂 = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
8 |
|
cdlemn11a.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
cdlemn11a.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
cdlemn11a.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
cdlemn11a.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
|
cdlemn11a.J |
⊢ 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
cdlemn11a.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
14 |
|
cdlemn11a.d |
⊢ + = ( +g ‘ 𝑈 ) |
15 |
|
cdlemn11a.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
16 |
|
cdlemn11a.f |
⊢ 𝐹 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = 𝑄 ) |
17 |
|
cdlemn11a.g |
⊢ 𝐺 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = 𝑁 ) |
18 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
19 |
2 4 5 6
|
lhpocnel2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
20 |
19
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
21 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) |
22 |
2 4 5 8 17
|
ltrniotacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) → 𝐺 ∈ 𝑇 ) |
23 |
18 20 21 22
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → 𝐺 ∈ 𝑇 ) |
24 |
|
fvresi |
⊢ ( 𝐺 ∈ 𝑇 → ( ( I ↾ 𝑇 ) ‘ 𝐺 ) = 𝐺 ) |
25 |
23 24
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( I ↾ 𝑇 ) ‘ 𝐺 ) = 𝐺 ) |
26 |
25
|
eqcomd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → 𝐺 = ( ( I ↾ 𝑇 ) ‘ 𝐺 ) ) |
27 |
5 8 10
|
tendoidcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ∈ 𝐸 ) |
28 |
27
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → ( I ↾ 𝑇 ) ∈ 𝐸 ) |
29 |
|
riotaex |
⊢ ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = 𝑁 ) ∈ V |
30 |
17 29
|
eqeltri |
⊢ 𝐺 ∈ V |
31 |
8
|
fvexi |
⊢ 𝑇 ∈ V |
32 |
|
resiexg |
⊢ ( 𝑇 ∈ V → ( I ↾ 𝑇 ) ∈ V ) |
33 |
31 32
|
ax-mp |
⊢ ( I ↾ 𝑇 ) ∈ V |
34 |
2 4 5 6 8 10 12 17 30 33
|
dicopelval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) → ( 〈 𝐺 , ( I ↾ 𝑇 ) 〉 ∈ ( 𝐽 ‘ 𝑁 ) ↔ ( 𝐺 = ( ( I ↾ 𝑇 ) ‘ 𝐺 ) ∧ ( I ↾ 𝑇 ) ∈ 𝐸 ) ) ) |
35 |
18 21 34
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → ( 〈 𝐺 , ( I ↾ 𝑇 ) 〉 ∈ ( 𝐽 ‘ 𝑁 ) ↔ ( 𝐺 = ( ( I ↾ 𝑇 ) ‘ 𝐺 ) ∧ ( I ↾ 𝑇 ) ∈ 𝐸 ) ) ) |
36 |
26 28 35
|
mpbir2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → 〈 𝐺 , ( I ↾ 𝑇 ) 〉 ∈ ( 𝐽 ‘ 𝑁 ) ) |