Metamath Proof Explorer


Theorem cdlemn11a

Description: Part of proof of Lemma N of Crawley p. 121 line 37. (Contributed by NM, 27-Feb-2014)

Ref Expression
Hypotheses cdlemn11a.b
|- B = ( Base ` K )
cdlemn11a.l
|- .<_ = ( le ` K )
cdlemn11a.j
|- .\/ = ( join ` K )
cdlemn11a.a
|- A = ( Atoms ` K )
cdlemn11a.h
|- H = ( LHyp ` K )
cdlemn11a.p
|- P = ( ( oc ` K ) ` W )
cdlemn11a.o
|- O = ( h e. T |-> ( _I |` B ) )
cdlemn11a.t
|- T = ( ( LTrn ` K ) ` W )
cdlemn11a.r
|- R = ( ( trL ` K ) ` W )
cdlemn11a.e
|- E = ( ( TEndo ` K ) ` W )
cdlemn11a.i
|- I = ( ( DIsoB ` K ) ` W )
cdlemn11a.J
|- J = ( ( DIsoC ` K ) ` W )
cdlemn11a.u
|- U = ( ( DVecH ` K ) ` W )
cdlemn11a.d
|- .+ = ( +g ` U )
cdlemn11a.s
|- .(+) = ( LSSum ` U )
cdlemn11a.f
|- F = ( iota_ h e. T ( h ` P ) = Q )
cdlemn11a.g
|- G = ( iota_ h e. T ( h ` P ) = N )
Assertion cdlemn11a
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> <. G , ( _I |` T ) >. e. ( J ` N ) )

Proof

Step Hyp Ref Expression
1 cdlemn11a.b
 |-  B = ( Base ` K )
2 cdlemn11a.l
 |-  .<_ = ( le ` K )
3 cdlemn11a.j
 |-  .\/ = ( join ` K )
4 cdlemn11a.a
 |-  A = ( Atoms ` K )
5 cdlemn11a.h
 |-  H = ( LHyp ` K )
6 cdlemn11a.p
 |-  P = ( ( oc ` K ) ` W )
7 cdlemn11a.o
 |-  O = ( h e. T |-> ( _I |` B ) )
8 cdlemn11a.t
 |-  T = ( ( LTrn ` K ) ` W )
9 cdlemn11a.r
 |-  R = ( ( trL ` K ) ` W )
10 cdlemn11a.e
 |-  E = ( ( TEndo ` K ) ` W )
11 cdlemn11a.i
 |-  I = ( ( DIsoB ` K ) ` W )
12 cdlemn11a.J
 |-  J = ( ( DIsoC ` K ) ` W )
13 cdlemn11a.u
 |-  U = ( ( DVecH ` K ) ` W )
14 cdlemn11a.d
 |-  .+ = ( +g ` U )
15 cdlemn11a.s
 |-  .(+) = ( LSSum ` U )
16 cdlemn11a.f
 |-  F = ( iota_ h e. T ( h ` P ) = Q )
17 cdlemn11a.g
 |-  G = ( iota_ h e. T ( h ` P ) = N )
18 simp1
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( K e. HL /\ W e. H ) )
19 2 4 5 6 lhpocnel2
 |-  ( ( K e. HL /\ W e. H ) -> ( P e. A /\ -. P .<_ W ) )
20 19 3ad2ant1
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( P e. A /\ -. P .<_ W ) )
21 simp22
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( N e. A /\ -. N .<_ W ) )
22 2 4 5 8 17 ltrniotacl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) -> G e. T )
23 18 20 21 22 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> G e. T )
24 fvresi
 |-  ( G e. T -> ( ( _I |` T ) ` G ) = G )
25 23 24 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( ( _I |` T ) ` G ) = G )
26 25 eqcomd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> G = ( ( _I |` T ) ` G ) )
27 5 8 10 tendoidcl
 |-  ( ( K e. HL /\ W e. H ) -> ( _I |` T ) e. E )
28 27 3ad2ant1
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( _I |` T ) e. E )
29 riotaex
 |-  ( iota_ h e. T ( h ` P ) = N ) e. _V
30 17 29 eqeltri
 |-  G e. _V
31 8 fvexi
 |-  T e. _V
32 resiexg
 |-  ( T e. _V -> ( _I |` T ) e. _V )
33 31 32 ax-mp
 |-  ( _I |` T ) e. _V
34 2 4 5 6 8 10 12 17 30 33 dicopelval2
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( N e. A /\ -. N .<_ W ) ) -> ( <. G , ( _I |` T ) >. e. ( J ` N ) <-> ( G = ( ( _I |` T ) ` G ) /\ ( _I |` T ) e. E ) ) )
35 18 21 34 syl2anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( <. G , ( _I |` T ) >. e. ( J ` N ) <-> ( G = ( ( _I |` T ) ` G ) /\ ( _I |` T ) e. E ) ) )
36 26 28 35 mpbir2and
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> <. G , ( _I |` T ) >. e. ( J ` N ) )