Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemn11a.b |
|- B = ( Base ` K ) |
2 |
|
cdlemn11a.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemn11a.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemn11a.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemn11a.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemn11a.p |
|- P = ( ( oc ` K ) ` W ) |
7 |
|
cdlemn11a.o |
|- O = ( h e. T |-> ( _I |` B ) ) |
8 |
|
cdlemn11a.t |
|- T = ( ( LTrn ` K ) ` W ) |
9 |
|
cdlemn11a.r |
|- R = ( ( trL ` K ) ` W ) |
10 |
|
cdlemn11a.e |
|- E = ( ( TEndo ` K ) ` W ) |
11 |
|
cdlemn11a.i |
|- I = ( ( DIsoB ` K ) ` W ) |
12 |
|
cdlemn11a.J |
|- J = ( ( DIsoC ` K ) ` W ) |
13 |
|
cdlemn11a.u |
|- U = ( ( DVecH ` K ) ` W ) |
14 |
|
cdlemn11a.d |
|- .+ = ( +g ` U ) |
15 |
|
cdlemn11a.s |
|- .(+) = ( LSSum ` U ) |
16 |
|
cdlemn11a.f |
|- F = ( iota_ h e. T ( h ` P ) = Q ) |
17 |
|
cdlemn11a.g |
|- G = ( iota_ h e. T ( h ` P ) = N ) |
18 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( K e. HL /\ W e. H ) ) |
19 |
2 4 5 6
|
lhpocnel2 |
|- ( ( K e. HL /\ W e. H ) -> ( P e. A /\ -. P .<_ W ) ) |
20 |
19
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
21 |
|
simp22 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( N e. A /\ -. N .<_ W ) ) |
22 |
2 4 5 8 17
|
ltrniotacl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) -> G e. T ) |
23 |
18 20 21 22
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> G e. T ) |
24 |
|
fvresi |
|- ( G e. T -> ( ( _I |` T ) ` G ) = G ) |
25 |
23 24
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( ( _I |` T ) ` G ) = G ) |
26 |
25
|
eqcomd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> G = ( ( _I |` T ) ` G ) ) |
27 |
5 8 10
|
tendoidcl |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` T ) e. E ) |
28 |
27
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( _I |` T ) e. E ) |
29 |
|
riotaex |
|- ( iota_ h e. T ( h ` P ) = N ) e. _V |
30 |
17 29
|
eqeltri |
|- G e. _V |
31 |
8
|
fvexi |
|- T e. _V |
32 |
|
resiexg |
|- ( T e. _V -> ( _I |` T ) e. _V ) |
33 |
31 32
|
ax-mp |
|- ( _I |` T ) e. _V |
34 |
2 4 5 6 8 10 12 17 30 33
|
dicopelval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( N e. A /\ -. N .<_ W ) ) -> ( <. G , ( _I |` T ) >. e. ( J ` N ) <-> ( G = ( ( _I |` T ) ` G ) /\ ( _I |` T ) e. E ) ) ) |
35 |
18 21 34
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( <. G , ( _I |` T ) >. e. ( J ` N ) <-> ( G = ( ( _I |` T ) ` G ) /\ ( _I |` T ) e. E ) ) ) |
36 |
26 28 35
|
mpbir2and |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> <. G , ( _I |` T ) >. e. ( J ` N ) ) |