| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemn10.b |
|- B = ( Base ` K ) |
| 2 |
|
cdlemn10.l |
|- .<_ = ( le ` K ) |
| 3 |
|
cdlemn10.j |
|- .\/ = ( join ` K ) |
| 4 |
|
cdlemn10.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdlemn10.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdlemn10.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 7 |
|
cdlemn10.r |
|- R = ( ( trL ` K ) ` W ) |
| 8 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> K e. HL ) |
| 9 |
8
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> K e. Lat ) |
| 10 |
|
simp22l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> S e. A ) |
| 11 |
1 4
|
atbase |
|- ( S e. A -> S e. B ) |
| 12 |
10 11
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> S e. B ) |
| 13 |
|
simp21l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> Q e. A ) |
| 14 |
1 3 4
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ S e. A ) -> ( Q .\/ S ) e. B ) |
| 15 |
8 13 10 14
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> ( Q .\/ S ) e. B ) |
| 16 |
1 4
|
atbase |
|- ( Q e. A -> Q e. B ) |
| 17 |
13 16
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> Q e. B ) |
| 18 |
|
simp23l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> X e. B ) |
| 19 |
1 3
|
latjcl |
|- ( ( K e. Lat /\ Q e. B /\ X e. B ) -> ( Q .\/ X ) e. B ) |
| 20 |
9 17 18 19
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> ( Q .\/ X ) e. B ) |
| 21 |
2 3 4
|
hlatlej2 |
|- ( ( K e. HL /\ Q e. A /\ S e. A ) -> S .<_ ( Q .\/ S ) ) |
| 22 |
8 13 10 21
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> S .<_ ( Q .\/ S ) ) |
| 23 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> W e. H ) |
| 24 |
1 5
|
lhpbase |
|- ( W e. H -> W e. B ) |
| 25 |
23 24
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> W e. B ) |
| 26 |
2 3 4
|
hlatlej1 |
|- ( ( K e. HL /\ Q e. A /\ S e. A ) -> Q .<_ ( Q .\/ S ) ) |
| 27 |
8 13 10 26
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> Q .<_ ( Q .\/ S ) ) |
| 28 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
| 29 |
1 2 3 28 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( Q e. A /\ ( Q .\/ S ) e. B /\ W e. B ) /\ Q .<_ ( Q .\/ S ) ) -> ( Q .\/ ( ( Q .\/ S ) ( meet ` K ) W ) ) = ( ( Q .\/ S ) ( meet ` K ) ( Q .\/ W ) ) ) |
| 30 |
8 13 15 25 27 29
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> ( Q .\/ ( ( Q .\/ S ) ( meet ` K ) W ) ) = ( ( Q .\/ S ) ( meet ` K ) ( Q .\/ W ) ) ) |
| 31 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> ( K e. HL /\ W e. H ) ) |
| 32 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
| 33 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
| 34 |
2 3 33 4 5
|
lhpjat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Q .\/ W ) = ( 1. ` K ) ) |
| 35 |
31 32 34
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> ( Q .\/ W ) = ( 1. ` K ) ) |
| 36 |
35
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> ( ( Q .\/ S ) ( meet ` K ) ( Q .\/ W ) ) = ( ( Q .\/ S ) ( meet ` K ) ( 1. ` K ) ) ) |
| 37 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
| 38 |
8 37
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> K e. OL ) |
| 39 |
1 28 33
|
olm11 |
|- ( ( K e. OL /\ ( Q .\/ S ) e. B ) -> ( ( Q .\/ S ) ( meet ` K ) ( 1. ` K ) ) = ( Q .\/ S ) ) |
| 40 |
38 15 39
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> ( ( Q .\/ S ) ( meet ` K ) ( 1. ` K ) ) = ( Q .\/ S ) ) |
| 41 |
30 36 40
|
3eqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> ( Q .\/ S ) = ( Q .\/ ( ( Q .\/ S ) ( meet ` K ) W ) ) ) |
| 42 |
|
simp31 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> g e. T ) |
| 43 |
2 3 28 4 5 6 7
|
trlval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ g e. T /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( R ` g ) = ( ( Q .\/ ( g ` Q ) ) ( meet ` K ) W ) ) |
| 44 |
31 42 32 43
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> ( R ` g ) = ( ( Q .\/ ( g ` Q ) ) ( meet ` K ) W ) ) |
| 45 |
|
simp32 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> ( g ` Q ) = S ) |
| 46 |
45
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> ( Q .\/ ( g ` Q ) ) = ( Q .\/ S ) ) |
| 47 |
46
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> ( ( Q .\/ ( g ` Q ) ) ( meet ` K ) W ) = ( ( Q .\/ S ) ( meet ` K ) W ) ) |
| 48 |
44 47
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> ( R ` g ) = ( ( Q .\/ S ) ( meet ` K ) W ) ) |
| 49 |
|
simp33 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> ( R ` g ) .<_ X ) |
| 50 |
48 49
|
eqbrtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> ( ( Q .\/ S ) ( meet ` K ) W ) .<_ X ) |
| 51 |
1 28
|
latmcl |
|- ( ( K e. Lat /\ ( Q .\/ S ) e. B /\ W e. B ) -> ( ( Q .\/ S ) ( meet ` K ) W ) e. B ) |
| 52 |
9 15 25 51
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> ( ( Q .\/ S ) ( meet ` K ) W ) e. B ) |
| 53 |
1 2 3
|
latjlej2 |
|- ( ( K e. Lat /\ ( ( ( Q .\/ S ) ( meet ` K ) W ) e. B /\ X e. B /\ Q e. B ) ) -> ( ( ( Q .\/ S ) ( meet ` K ) W ) .<_ X -> ( Q .\/ ( ( Q .\/ S ) ( meet ` K ) W ) ) .<_ ( Q .\/ X ) ) ) |
| 54 |
9 52 18 17 53
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> ( ( ( Q .\/ S ) ( meet ` K ) W ) .<_ X -> ( Q .\/ ( ( Q .\/ S ) ( meet ` K ) W ) ) .<_ ( Q .\/ X ) ) ) |
| 55 |
50 54
|
mpd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> ( Q .\/ ( ( Q .\/ S ) ( meet ` K ) W ) ) .<_ ( Q .\/ X ) ) |
| 56 |
41 55
|
eqbrtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> ( Q .\/ S ) .<_ ( Q .\/ X ) ) |
| 57 |
1 2 9 12 15 20 22 56
|
lattrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = S /\ ( R ` g ) .<_ X ) ) -> S .<_ ( Q .\/ X ) ) |