| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemn10.b |
|
| 2 |
|
cdlemn10.l |
|
| 3 |
|
cdlemn10.j |
|
| 4 |
|
cdlemn10.a |
|
| 5 |
|
cdlemn10.h |
|
| 6 |
|
cdlemn10.t |
|
| 7 |
|
cdlemn10.r |
|
| 8 |
|
simp1l |
|
| 9 |
8
|
hllatd |
|
| 10 |
|
simp22l |
|
| 11 |
1 4
|
atbase |
|
| 12 |
10 11
|
syl |
|
| 13 |
|
simp21l |
|
| 14 |
1 3 4
|
hlatjcl |
|
| 15 |
8 13 10 14
|
syl3anc |
|
| 16 |
1 4
|
atbase |
|
| 17 |
13 16
|
syl |
|
| 18 |
|
simp23l |
|
| 19 |
1 3
|
latjcl |
|
| 20 |
9 17 18 19
|
syl3anc |
|
| 21 |
2 3 4
|
hlatlej2 |
|
| 22 |
8 13 10 21
|
syl3anc |
|
| 23 |
|
simp1r |
|
| 24 |
1 5
|
lhpbase |
|
| 25 |
23 24
|
syl |
|
| 26 |
2 3 4
|
hlatlej1 |
|
| 27 |
8 13 10 26
|
syl3anc |
|
| 28 |
|
eqid |
|
| 29 |
1 2 3 28 4
|
atmod3i1 |
|
| 30 |
8 13 15 25 27 29
|
syl131anc |
|
| 31 |
|
simp1 |
|
| 32 |
|
simp21 |
|
| 33 |
|
eqid |
|
| 34 |
2 3 33 4 5
|
lhpjat2 |
|
| 35 |
31 32 34
|
syl2anc |
|
| 36 |
35
|
oveq2d |
|
| 37 |
|
hlol |
|
| 38 |
8 37
|
syl |
|
| 39 |
1 28 33
|
olm11 |
|
| 40 |
38 15 39
|
syl2anc |
|
| 41 |
30 36 40
|
3eqtrrd |
|
| 42 |
|
simp31 |
|
| 43 |
2 3 28 4 5 6 7
|
trlval2 |
|
| 44 |
31 42 32 43
|
syl3anc |
|
| 45 |
|
simp32 |
|
| 46 |
45
|
oveq2d |
|
| 47 |
46
|
oveq1d |
|
| 48 |
44 47
|
eqtrd |
|
| 49 |
|
simp33 |
|
| 50 |
48 49
|
eqbrtrrd |
|
| 51 |
1 28
|
latmcl |
|
| 52 |
9 15 25 51
|
syl3anc |
|
| 53 |
1 2 3
|
latjlej2 |
|
| 54 |
9 52 18 17 53
|
syl13anc |
|
| 55 |
50 54
|
mpd |
|
| 56 |
41 55
|
eqbrtrd |
|
| 57 |
1 2 9 12 15 20 22 56
|
lattrd |
|