Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemn8.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemn8.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemn8.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
cdlemn8.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
cdlemn8.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
cdlemn8.o |
⊢ 𝑂 = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
7 |
|
cdlemn8.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemn8.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
cdlemn8.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
cdlemn8.s |
⊢ + = ( +g ‘ 𝑈 ) |
11 |
|
cdlemn8.f |
⊢ 𝐹 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = 𝑄 ) |
12 |
|
cdlemn8.g |
⊢ 𝐺 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = 𝑅 ) |
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdlemn8 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 𝑔 = ( 𝐺 ∘ ◡ 𝐹 ) ) |
14 |
13
|
fveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑔 ‘ 𝑄 ) = ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ 𝑄 ) ) |
15 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
16 |
2 3 4 5
|
lhpocnel2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
17 |
16
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
18 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
19 |
2 3 4 7 11
|
ltrniotacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
20 |
15 17 18 19
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 𝐹 ∈ 𝑇 ) |
21 |
1 4 7
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
22 |
15 20 21
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
23 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
24 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 ⟶ 𝐵 ) |
25 |
22 23 24
|
3syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ◡ 𝐹 : 𝐵 ⟶ 𝐵 ) |
26 |
|
simp2ll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 𝑄 ∈ 𝐴 ) |
27 |
1 3
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
28 |
26 27
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 𝑄 ∈ 𝐵 ) |
29 |
|
fvco3 |
⊢ ( ( ◡ 𝐹 : 𝐵 ⟶ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ 𝑄 ) = ( 𝐺 ‘ ( ◡ 𝐹 ‘ 𝑄 ) ) ) |
30 |
25 28 29
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( ( 𝐺 ∘ ◡ 𝐹 ) ‘ 𝑄 ) = ( 𝐺 ‘ ( ◡ 𝐹 ‘ 𝑄 ) ) ) |
31 |
2 3 4 7 11
|
ltrniotacnvval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ◡ 𝐹 ‘ 𝑄 ) = 𝑃 ) |
32 |
15 17 18 31
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( ◡ 𝐹 ‘ 𝑄 ) = 𝑃 ) |
33 |
32
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝐺 ‘ ( ◡ 𝐹 ‘ 𝑄 ) ) = ( 𝐺 ‘ 𝑃 ) ) |
34 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
35 |
2 3 4 7 12
|
ltrniotaval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( 𝐺 ‘ 𝑃 ) = 𝑅 ) |
36 |
15 17 34 35
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝐺 ‘ 𝑃 ) = 𝑅 ) |
37 |
33 36
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝐺 ‘ ( ◡ 𝐹 ‘ 𝑄 ) ) = 𝑅 ) |
38 |
14 30 37
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑔 ‘ 𝑄 ) = 𝑅 ) |