Metamath Proof Explorer


Theorem cdlemn9

Description: Part of proof of Lemma N of Crawley p. 121 line 36. (Contributed by NM, 27-Feb-2014)

Ref Expression
Hypotheses cdlemn8.b 𝐵 = ( Base ‘ 𝐾 )
cdlemn8.l = ( le ‘ 𝐾 )
cdlemn8.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemn8.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemn8.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
cdlemn8.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
cdlemn8.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemn8.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
cdlemn8.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
cdlemn8.s + = ( +g𝑈 )
cdlemn8.f 𝐹 = ( 𝑇 ( 𝑃 ) = 𝑄 )
cdlemn8.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑅 )
Assertion cdlemn9 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑔𝑄 ) = 𝑅 )

Proof

Step Hyp Ref Expression
1 cdlemn8.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemn8.l = ( le ‘ 𝐾 )
3 cdlemn8.a 𝐴 = ( Atoms ‘ 𝐾 )
4 cdlemn8.h 𝐻 = ( LHyp ‘ 𝐾 )
5 cdlemn8.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
6 cdlemn8.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
7 cdlemn8.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemn8.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
9 cdlemn8.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
10 cdlemn8.s + = ( +g𝑈 )
11 cdlemn8.f 𝐹 = ( 𝑇 ( 𝑃 ) = 𝑄 )
12 cdlemn8.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑅 )
13 1 2 3 4 5 6 7 8 9 10 11 12 cdlemn8 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → 𝑔 = ( 𝐺 𝐹 ) )
14 13 fveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑔𝑄 ) = ( ( 𝐺 𝐹 ) ‘ 𝑄 ) )
15 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
16 2 3 4 5 lhpocnel2 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
17 16 3ad2ant1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
18 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
19 2 3 4 7 11 ltrniotacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝐹𝑇 )
20 15 17 18 19 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → 𝐹𝑇 )
21 1 4 7 ltrn1o ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → 𝐹 : 𝐵1-1-onto𝐵 )
22 15 20 21 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → 𝐹 : 𝐵1-1-onto𝐵 )
23 f1ocnv ( 𝐹 : 𝐵1-1-onto𝐵 𝐹 : 𝐵1-1-onto𝐵 )
24 f1of ( 𝐹 : 𝐵1-1-onto𝐵 𝐹 : 𝐵𝐵 )
25 22 23 24 3syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → 𝐹 : 𝐵𝐵 )
26 simp2ll ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → 𝑄𝐴 )
27 1 3 atbase ( 𝑄𝐴𝑄𝐵 )
28 26 27 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → 𝑄𝐵 )
29 fvco3 ( ( 𝐹 : 𝐵𝐵𝑄𝐵 ) → ( ( 𝐺 𝐹 ) ‘ 𝑄 ) = ( 𝐺 ‘ ( 𝐹𝑄 ) ) )
30 25 28 29 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( ( 𝐺 𝐹 ) ‘ 𝑄 ) = ( 𝐺 ‘ ( 𝐹𝑄 ) ) )
31 2 3 4 7 11 ltrniotacnvval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐹𝑄 ) = 𝑃 )
32 15 17 18 31 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝐹𝑄 ) = 𝑃 )
33 32 fveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝐺 ‘ ( 𝐹𝑄 ) ) = ( 𝐺𝑃 ) )
34 simp2r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
35 2 3 4 7 12 ltrniotaval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( 𝐺𝑃 ) = 𝑅 )
36 15 17 34 35 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝐺𝑃 ) = 𝑅 )
37 33 36 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝐺 ‘ ( 𝐹𝑄 ) ) = 𝑅 )
38 14 30 37 3eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑔𝑄 ) = 𝑅 )