Metamath Proof Explorer


Theorem cdlemn9

Description: Part of proof of Lemma N of Crawley p. 121 line 36. (Contributed by NM, 27-Feb-2014)

Ref Expression
Hypotheses cdlemn8.b B=BaseK
cdlemn8.l ˙=K
cdlemn8.a A=AtomsK
cdlemn8.h H=LHypK
cdlemn8.p P=ocKW
cdlemn8.o O=hTIB
cdlemn8.t T=LTrnKW
cdlemn8.e E=TEndoKW
cdlemn8.u U=DVecHKW
cdlemn8.s +˙=+U
cdlemn8.f F=ιhT|hP=Q
cdlemn8.g G=ιhT|hP=R
Assertion cdlemn9 KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOgQ=R

Proof

Step Hyp Ref Expression
1 cdlemn8.b B=BaseK
2 cdlemn8.l ˙=K
3 cdlemn8.a A=AtomsK
4 cdlemn8.h H=LHypK
5 cdlemn8.p P=ocKW
6 cdlemn8.o O=hTIB
7 cdlemn8.t T=LTrnKW
8 cdlemn8.e E=TEndoKW
9 cdlemn8.u U=DVecHKW
10 cdlemn8.s +˙=+U
11 cdlemn8.f F=ιhT|hP=Q
12 cdlemn8.g G=ιhT|hP=R
13 1 2 3 4 5 6 7 8 9 10 11 12 cdlemn8 KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOg=GF-1
14 13 fveq1d KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOgQ=GF-1Q
15 simp1 KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOKHLWH
16 2 3 4 5 lhpocnel2 KHLWHPA¬P˙W
17 16 3ad2ant1 KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOPA¬P˙W
18 simp2l KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOQA¬Q˙W
19 2 3 4 7 11 ltrniotacl KHLWHPA¬P˙WQA¬Q˙WFT
20 15 17 18 19 syl3anc KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOFT
21 1 4 7 ltrn1o KHLWHFTF:B1-1 ontoB
22 15 20 21 syl2anc KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOF:B1-1 ontoB
23 f1ocnv F:B1-1 ontoBF-1:B1-1 ontoB
24 f1of F-1:B1-1 ontoBF-1:BB
25 22 23 24 3syl KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOF-1:BB
26 simp2ll KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOQA
27 1 3 atbase QAQB
28 26 27 syl KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOQB
29 fvco3 F-1:BBQBGF-1Q=GF-1Q
30 25 28 29 syl2anc KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOGF-1Q=GF-1Q
31 2 3 4 7 11 ltrniotacnvval KHLWHPA¬P˙WQA¬Q˙WF-1Q=P
32 15 17 18 31 syl3anc KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOF-1Q=P
33 32 fveq2d KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOGF-1Q=GP
34 simp2r KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gORA¬R˙W
35 2 3 4 7 12 ltrniotaval KHLWHPA¬P˙WRA¬R˙WGP=R
36 15 17 34 35 syl3anc KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOGP=R
37 33 36 eqtrd KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOGF-1Q=R
38 14 30 37 3eqtrd KHLWHQA¬Q˙WRA¬R˙WsEgTGIT=sFs+˙gOgQ=R