Metamath Proof Explorer


Theorem cdlemn11

Description: Part of proof of Lemma N of Crawley p. 121 line 37. (Contributed by NM, 27-Feb-2014)

Ref Expression
Hypotheses cdlemn11.b 𝐵 = ( Base ‘ 𝐾 )
cdlemn11.l = ( le ‘ 𝐾 )
cdlemn11.j = ( join ‘ 𝐾 )
cdlemn11.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemn11.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemn11.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11.J 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11.s = ( LSSum ‘ 𝑈 )
Assertion cdlemn11 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑅 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → 𝑅 ( 𝑄 𝑋 ) )

Proof

Step Hyp Ref Expression
1 cdlemn11.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemn11.l = ( le ‘ 𝐾 )
3 cdlemn11.j = ( join ‘ 𝐾 )
4 cdlemn11.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemn11.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemn11.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemn11.J 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemn11.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
9 cdlemn11.s = ( LSSum ‘ 𝑈 )
10 eqid ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
11 eqid ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) )
12 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
13 eqid ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
14 eqid ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
15 eqid ( +g𝑈 ) = ( +g𝑈 )
16 eqid ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 )
17 eqid ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑅 ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑅 )
18 1 2 3 4 5 10 11 12 13 14 6 7 8 15 9 16 17 cdlemn11pre ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑅 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → 𝑅 ( 𝑄 𝑋 ) )