Metamath Proof Explorer


Theorem dihvalc

Description: Value of isomorphism H for a lattice K when -. X .<_ W . (Contributed by NM, 4-Mar-2014)

Ref Expression
Hypotheses dihval.b B=BaseK
dihval.l ˙=K
dihval.j ˙=joinK
dihval.m ˙=meetK
dihval.a A=AtomsK
dihval.h H=LHypK
dihval.i I=DIsoHKW
dihval.d D=DIsoBKW
dihval.c C=DIsoCKW
dihval.u U=DVecHKW
dihval.s S=LSubSpU
dihval.p ˙=LSSumU
Assertion dihvalc KVWHXB¬X˙WIX=ιuS|qA¬q˙Wq˙X˙W=Xu=Cq˙DX˙W

Proof

Step Hyp Ref Expression
1 dihval.b B=BaseK
2 dihval.l ˙=K
3 dihval.j ˙=joinK
4 dihval.m ˙=meetK
5 dihval.a A=AtomsK
6 dihval.h H=LHypK
7 dihval.i I=DIsoHKW
8 dihval.d D=DIsoBKW
9 dihval.c C=DIsoCKW
10 dihval.u U=DVecHKW
11 dihval.s S=LSubSpU
12 dihval.p ˙=LSSumU
13 1 2 3 4 5 6 7 8 9 10 11 12 dihval KVWHXBIX=ifX˙WDXιuS|qA¬q˙Wq˙X˙W=Xu=Cq˙DX˙W
14 iffalse ¬X˙WifX˙WDXιuS|qA¬q˙Wq˙X˙W=Xu=Cq˙DX˙W=ιuS|qA¬q˙Wq˙X˙W=Xu=Cq˙DX˙W
15 13 14 sylan9eq KVWHXB¬X˙WIX=ιuS|qA¬q˙Wq˙X˙W=Xu=Cq˙DX˙W
16 15 anasss KVWHXB¬X˙WIX=ιuS|qA¬q˙Wq˙X˙W=Xu=Cq˙DX˙W