Metamath Proof Explorer


Theorem dihvalc

Description: Value of isomorphism H for a lattice K when -. X .<_ W . (Contributed by NM, 4-Mar-2014)

Ref Expression
Hypotheses dihval.b 𝐵 = ( Base ‘ 𝐾 )
dihval.l = ( le ‘ 𝐾 )
dihval.j = ( join ‘ 𝐾 )
dihval.m = ( meet ‘ 𝐾 )
dihval.a 𝐴 = ( Atoms ‘ 𝐾 )
dihval.h 𝐻 = ( LHyp ‘ 𝐾 )
dihval.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihval.d 𝐷 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
dihval.c 𝐶 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
dihval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihval.s 𝑆 = ( LSubSp ‘ 𝑈 )
dihval.p = ( LSSum ‘ 𝑈 )
Assertion dihvalc ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐼𝑋 ) = ( 𝑢𝑆𝑞𝐴 ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑋 𝑊 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 dihval.b 𝐵 = ( Base ‘ 𝐾 )
2 dihval.l = ( le ‘ 𝐾 )
3 dihval.j = ( join ‘ 𝐾 )
4 dihval.m = ( meet ‘ 𝐾 )
5 dihval.a 𝐴 = ( Atoms ‘ 𝐾 )
6 dihval.h 𝐻 = ( LHyp ‘ 𝐾 )
7 dihval.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
8 dihval.d 𝐷 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
9 dihval.c 𝐶 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
10 dihval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
11 dihval.s 𝑆 = ( LSubSp ‘ 𝑈 )
12 dihval.p = ( LSSum ‘ 𝑈 )
13 1 2 3 4 5 6 7 8 9 10 11 12 dihval ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑋𝐵 ) → ( 𝐼𝑋 ) = if ( 𝑋 𝑊 , ( 𝐷𝑋 ) , ( 𝑢𝑆𝑞𝐴 ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑋 𝑊 ) ) ) ) ) ) )
14 iffalse ( ¬ 𝑋 𝑊 → if ( 𝑋 𝑊 , ( 𝐷𝑋 ) , ( 𝑢𝑆𝑞𝐴 ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑋 𝑊 ) ) ) ) ) ) = ( 𝑢𝑆𝑞𝐴 ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑋 𝑊 ) ) ) ) ) )
15 13 14 sylan9eq ( ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑋𝐵 ) ∧ ¬ 𝑋 𝑊 ) → ( 𝐼𝑋 ) = ( 𝑢𝑆𝑞𝐴 ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑋 𝑊 ) ) ) ) ) )
16 15 anasss ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐼𝑋 ) = ( 𝑢𝑆𝑞𝐴 ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑋 𝑊 ) ) ) ) ) )