Metamath Proof Explorer


Theorem dihval

Description: Value of isomorphism H for a lattice K . Definition of isomorphism map in Crawley p. 122 line 3. (Contributed by NM, 3-Feb-2014)

Ref Expression
Hypotheses dihval.b 𝐵 = ( Base ‘ 𝐾 )
dihval.l = ( le ‘ 𝐾 )
dihval.j = ( join ‘ 𝐾 )
dihval.m = ( meet ‘ 𝐾 )
dihval.a 𝐴 = ( Atoms ‘ 𝐾 )
dihval.h 𝐻 = ( LHyp ‘ 𝐾 )
dihval.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihval.d 𝐷 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
dihval.c 𝐶 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
dihval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihval.s 𝑆 = ( LSubSp ‘ 𝑈 )
dihval.p = ( LSSum ‘ 𝑈 )
Assertion dihval ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑋𝐵 ) → ( 𝐼𝑋 ) = if ( 𝑋 𝑊 , ( 𝐷𝑋 ) , ( 𝑢𝑆𝑞𝐴 ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑋 𝑊 ) ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 dihval.b 𝐵 = ( Base ‘ 𝐾 )
2 dihval.l = ( le ‘ 𝐾 )
3 dihval.j = ( join ‘ 𝐾 )
4 dihval.m = ( meet ‘ 𝐾 )
5 dihval.a 𝐴 = ( Atoms ‘ 𝐾 )
6 dihval.h 𝐻 = ( LHyp ‘ 𝐾 )
7 dihval.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
8 dihval.d 𝐷 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
9 dihval.c 𝐶 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
10 dihval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
11 dihval.s 𝑆 = ( LSubSp ‘ 𝑈 )
12 dihval.p = ( LSSum ‘ 𝑈 )
13 1 2 3 4 5 6 7 8 9 10 11 12 dihfval ( ( 𝐾𝑉𝑊𝐻 ) → 𝐼 = ( 𝑥𝐵 ↦ if ( 𝑥 𝑊 , ( 𝐷𝑥 ) , ( 𝑢𝑆𝑞𝐴 ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑥 𝑊 ) ) ) ) ) ) ) )
14 13 fveq1d ( ( 𝐾𝑉𝑊𝐻 ) → ( 𝐼𝑋 ) = ( ( 𝑥𝐵 ↦ if ( 𝑥 𝑊 , ( 𝐷𝑥 ) , ( 𝑢𝑆𝑞𝐴 ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑥 𝑊 ) ) ) ) ) ) ) ‘ 𝑋 ) )
15 breq1 ( 𝑥 = 𝑋 → ( 𝑥 𝑊𝑋 𝑊 ) )
16 fveq2 ( 𝑥 = 𝑋 → ( 𝐷𝑥 ) = ( 𝐷𝑋 ) )
17 oveq1 ( 𝑥 = 𝑋 → ( 𝑥 𝑊 ) = ( 𝑋 𝑊 ) )
18 17 oveq2d ( 𝑥 = 𝑋 → ( 𝑞 ( 𝑥 𝑊 ) ) = ( 𝑞 ( 𝑋 𝑊 ) ) )
19 id ( 𝑥 = 𝑋𝑥 = 𝑋 )
20 18 19 eqeq12d ( 𝑥 = 𝑋 → ( ( 𝑞 ( 𝑥 𝑊 ) ) = 𝑥 ↔ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) )
21 20 anbi2d ( 𝑥 = 𝑋 → ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑥 𝑊 ) ) = 𝑥 ) ↔ ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) ) )
22 fvoveq1 ( 𝑥 = 𝑋 → ( 𝐷 ‘ ( 𝑥 𝑊 ) ) = ( 𝐷 ‘ ( 𝑋 𝑊 ) ) )
23 22 oveq2d ( 𝑥 = 𝑋 → ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑥 𝑊 ) ) ) = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑋 𝑊 ) ) ) )
24 23 eqeq2d ( 𝑥 = 𝑋 → ( 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑥 𝑊 ) ) ) ↔ 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑋 𝑊 ) ) ) ) )
25 21 24 imbi12d ( 𝑥 = 𝑋 → ( ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑥 𝑊 ) ) ) ) ↔ ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑋 𝑊 ) ) ) ) ) )
26 25 ralbidv ( 𝑥 = 𝑋 → ( ∀ 𝑞𝐴 ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑥 𝑊 ) ) ) ) ↔ ∀ 𝑞𝐴 ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑋 𝑊 ) ) ) ) ) )
27 26 riotabidv ( 𝑥 = 𝑋 → ( 𝑢𝑆𝑞𝐴 ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑥 𝑊 ) ) ) ) ) = ( 𝑢𝑆𝑞𝐴 ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑋 𝑊 ) ) ) ) ) )
28 15 16 27 ifbieq12d ( 𝑥 = 𝑋 → if ( 𝑥 𝑊 , ( 𝐷𝑥 ) , ( 𝑢𝑆𝑞𝐴 ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑥 𝑊 ) ) ) ) ) ) = if ( 𝑋 𝑊 , ( 𝐷𝑋 ) , ( 𝑢𝑆𝑞𝐴 ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑋 𝑊 ) ) ) ) ) ) )
29 eqid ( 𝑥𝐵 ↦ if ( 𝑥 𝑊 , ( 𝐷𝑥 ) , ( 𝑢𝑆𝑞𝐴 ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑥 𝑊 ) ) ) ) ) ) ) = ( 𝑥𝐵 ↦ if ( 𝑥 𝑊 , ( 𝐷𝑥 ) , ( 𝑢𝑆𝑞𝐴 ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑥 𝑊 ) ) ) ) ) ) )
30 fvex ( 𝐷𝑋 ) ∈ V
31 riotaex ( 𝑢𝑆𝑞𝐴 ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑋 𝑊 ) ) ) ) ) ∈ V
32 30 31 ifex if ( 𝑋 𝑊 , ( 𝐷𝑋 ) , ( 𝑢𝑆𝑞𝐴 ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑋 𝑊 ) ) ) ) ) ) ∈ V
33 28 29 32 fvmpt ( 𝑋𝐵 → ( ( 𝑥𝐵 ↦ if ( 𝑥 𝑊 , ( 𝐷𝑥 ) , ( 𝑢𝑆𝑞𝐴 ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑥 𝑊 ) ) ) ) ) ) ) ‘ 𝑋 ) = if ( 𝑋 𝑊 , ( 𝐷𝑋 ) , ( 𝑢𝑆𝑞𝐴 ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑋 𝑊 ) ) ) ) ) ) )
34 14 33 sylan9eq ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑋𝐵 ) → ( 𝐼𝑋 ) = if ( 𝑋 𝑊 , ( 𝐷𝑋 ) , ( 𝑢𝑆𝑞𝐴 ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶𝑞 ) ( 𝐷 ‘ ( 𝑋 𝑊 ) ) ) ) ) ) )