Step |
Hyp |
Ref |
Expression |
1 |
|
dihval.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihval.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dihval.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
dihval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
dihval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
dihval.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihval.d |
⊢ 𝐷 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
dihval.c |
⊢ 𝐶 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
dihval.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
dihval.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
12 |
|
dihval.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dihfval |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → 𝐼 = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ≤ 𝑊 , ( 𝐷 ‘ 𝑥 ) , ( ℩ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑥 ∧ 𝑊 ) ) ) ) ) ) ) ) |
14 |
13
|
fveq1d |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 ‘ 𝑋 ) = ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ≤ 𝑊 , ( 𝐷 ‘ 𝑥 ) , ( ℩ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑥 ∧ 𝑊 ) ) ) ) ) ) ) ‘ 𝑋 ) ) |
15 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊 ) ) |
16 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐷 ‘ 𝑥 ) = ( 𝐷 ‘ 𝑋 ) ) |
17 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∧ 𝑊 ) = ( 𝑋 ∧ 𝑊 ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑞 ∨ ( 𝑥 ∧ 𝑊 ) ) = ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
19 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
20 |
18 19
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑞 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ↔ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |
21 |
20
|
anbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) ↔ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) |
22 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝐷 ‘ ( 𝑥 ∧ 𝑊 ) ) = ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑥 ∧ 𝑊 ) ) ) = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) |
24 |
23
|
eqeq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑥 ∧ 𝑊 ) ) ) ↔ 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
25 |
21 24
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑥 ∧ 𝑊 ) ) ) ) ↔ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) ) |
26 |
25
|
ralbidv |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑥 ∧ 𝑊 ) ) ) ) ↔ ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) ) |
27 |
26
|
riotabidv |
⊢ ( 𝑥 = 𝑋 → ( ℩ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑥 ∧ 𝑊 ) ) ) ) ) = ( ℩ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) ) |
28 |
15 16 27
|
ifbieq12d |
⊢ ( 𝑥 = 𝑋 → if ( 𝑥 ≤ 𝑊 , ( 𝐷 ‘ 𝑥 ) , ( ℩ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑥 ∧ 𝑊 ) ) ) ) ) ) = if ( 𝑋 ≤ 𝑊 , ( 𝐷 ‘ 𝑋 ) , ( ℩ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) ) ) |
29 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ≤ 𝑊 , ( 𝐷 ‘ 𝑥 ) , ( ℩ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑥 ∧ 𝑊 ) ) ) ) ) ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ≤ 𝑊 , ( 𝐷 ‘ 𝑥 ) , ( ℩ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑥 ∧ 𝑊 ) ) ) ) ) ) ) |
30 |
|
fvex |
⊢ ( 𝐷 ‘ 𝑋 ) ∈ V |
31 |
|
riotaex |
⊢ ( ℩ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) ∈ V |
32 |
30 31
|
ifex |
⊢ if ( 𝑋 ≤ 𝑊 , ( 𝐷 ‘ 𝑋 ) , ( ℩ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) ) ∈ V |
33 |
28 29 32
|
fvmpt |
⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ≤ 𝑊 , ( 𝐷 ‘ 𝑥 ) , ( ℩ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑥 ∧ 𝑊 ) ) ) ) ) ) ) ‘ 𝑋 ) = if ( 𝑋 ≤ 𝑊 , ( 𝐷 ‘ 𝑋 ) , ( ℩ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) ) ) |
34 |
14 33
|
sylan9eq |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) = if ( 𝑋 ≤ 𝑊 , ( 𝐷 ‘ 𝑋 ) , ( ℩ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) ) ) |