Step |
Hyp |
Ref |
Expression |
1 |
|
dihval.b |
|- B = ( Base ` K ) |
2 |
|
dihval.l |
|- .<_ = ( le ` K ) |
3 |
|
dihval.j |
|- .\/ = ( join ` K ) |
4 |
|
dihval.m |
|- ./\ = ( meet ` K ) |
5 |
|
dihval.a |
|- A = ( Atoms ` K ) |
6 |
|
dihval.h |
|- H = ( LHyp ` K ) |
7 |
|
dihval.i |
|- I = ( ( DIsoH ` K ) ` W ) |
8 |
|
dihval.d |
|- D = ( ( DIsoB ` K ) ` W ) |
9 |
|
dihval.c |
|- C = ( ( DIsoC ` K ) ` W ) |
10 |
|
dihval.u |
|- U = ( ( DVecH ` K ) ` W ) |
11 |
|
dihval.s |
|- S = ( LSubSp ` U ) |
12 |
|
dihval.p |
|- .(+) = ( LSSum ` U ) |
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dihfval |
|- ( ( K e. V /\ W e. H ) -> I = ( x e. B |-> if ( x .<_ W , ( D ` x ) , ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( x ./\ W ) ) = x ) -> u = ( ( C ` q ) .(+) ( D ` ( x ./\ W ) ) ) ) ) ) ) ) |
14 |
13
|
fveq1d |
|- ( ( K e. V /\ W e. H ) -> ( I ` X ) = ( ( x e. B |-> if ( x .<_ W , ( D ` x ) , ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( x ./\ W ) ) = x ) -> u = ( ( C ` q ) .(+) ( D ` ( x ./\ W ) ) ) ) ) ) ) ` X ) ) |
15 |
|
breq1 |
|- ( x = X -> ( x .<_ W <-> X .<_ W ) ) |
16 |
|
fveq2 |
|- ( x = X -> ( D ` x ) = ( D ` X ) ) |
17 |
|
oveq1 |
|- ( x = X -> ( x ./\ W ) = ( X ./\ W ) ) |
18 |
17
|
oveq2d |
|- ( x = X -> ( q .\/ ( x ./\ W ) ) = ( q .\/ ( X ./\ W ) ) ) |
19 |
|
id |
|- ( x = X -> x = X ) |
20 |
18 19
|
eqeq12d |
|- ( x = X -> ( ( q .\/ ( x ./\ W ) ) = x <-> ( q .\/ ( X ./\ W ) ) = X ) ) |
21 |
20
|
anbi2d |
|- ( x = X -> ( ( -. q .<_ W /\ ( q .\/ ( x ./\ W ) ) = x ) <-> ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) ) ) |
22 |
|
fvoveq1 |
|- ( x = X -> ( D ` ( x ./\ W ) ) = ( D ` ( X ./\ W ) ) ) |
23 |
22
|
oveq2d |
|- ( x = X -> ( ( C ` q ) .(+) ( D ` ( x ./\ W ) ) ) = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) |
24 |
23
|
eqeq2d |
|- ( x = X -> ( u = ( ( C ` q ) .(+) ( D ` ( x ./\ W ) ) ) <-> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) |
25 |
21 24
|
imbi12d |
|- ( x = X -> ( ( ( -. q .<_ W /\ ( q .\/ ( x ./\ W ) ) = x ) -> u = ( ( C ` q ) .(+) ( D ` ( x ./\ W ) ) ) ) <-> ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) ) |
26 |
25
|
ralbidv |
|- ( x = X -> ( A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( x ./\ W ) ) = x ) -> u = ( ( C ` q ) .(+) ( D ` ( x ./\ W ) ) ) ) <-> A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) ) |
27 |
26
|
riotabidv |
|- ( x = X -> ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( x ./\ W ) ) = x ) -> u = ( ( C ` q ) .(+) ( D ` ( x ./\ W ) ) ) ) ) = ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) ) |
28 |
15 16 27
|
ifbieq12d |
|- ( x = X -> if ( x .<_ W , ( D ` x ) , ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( x ./\ W ) ) = x ) -> u = ( ( C ` q ) .(+) ( D ` ( x ./\ W ) ) ) ) ) ) = if ( X .<_ W , ( D ` X ) , ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) ) ) |
29 |
|
eqid |
|- ( x e. B |-> if ( x .<_ W , ( D ` x ) , ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( x ./\ W ) ) = x ) -> u = ( ( C ` q ) .(+) ( D ` ( x ./\ W ) ) ) ) ) ) ) = ( x e. B |-> if ( x .<_ W , ( D ` x ) , ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( x ./\ W ) ) = x ) -> u = ( ( C ` q ) .(+) ( D ` ( x ./\ W ) ) ) ) ) ) ) |
30 |
|
fvex |
|- ( D ` X ) e. _V |
31 |
|
riotaex |
|- ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) e. _V |
32 |
30 31
|
ifex |
|- if ( X .<_ W , ( D ` X ) , ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) ) e. _V |
33 |
28 29 32
|
fvmpt |
|- ( X e. B -> ( ( x e. B |-> if ( x .<_ W , ( D ` x ) , ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( x ./\ W ) ) = x ) -> u = ( ( C ` q ) .(+) ( D ` ( x ./\ W ) ) ) ) ) ) ) ` X ) = if ( X .<_ W , ( D ` X ) , ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) ) ) |
34 |
14 33
|
sylan9eq |
|- ( ( ( K e. V /\ W e. H ) /\ X e. B ) -> ( I ` X ) = if ( X .<_ W , ( D ` X ) , ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( X ./\ W ) ) = X ) -> u = ( ( C ` q ) .(+) ( D ` ( X ./\ W ) ) ) ) ) ) ) |