Step |
Hyp |
Ref |
Expression |
1 |
|
dihval.b |
|- B = ( Base ` K ) |
2 |
|
dihval.l |
|- .<_ = ( le ` K ) |
3 |
|
dihval.j |
|- .\/ = ( join ` K ) |
4 |
|
dihval.m |
|- ./\ = ( meet ` K ) |
5 |
|
dihval.a |
|- A = ( Atoms ` K ) |
6 |
|
dihval.h |
|- H = ( LHyp ` K ) |
7 |
|
dihval.i |
|- I = ( ( DIsoH ` K ) ` W ) |
8 |
|
dihval.d |
|- D = ( ( DIsoB ` K ) ` W ) |
9 |
|
dihval.c |
|- C = ( ( DIsoC ` K ) ` W ) |
10 |
|
dihval.u |
|- U = ( ( DVecH ` K ) ` W ) |
11 |
|
dihval.s |
|- S = ( LSubSp ` U ) |
12 |
|
dihval.p |
|- .(+) = ( LSSum ` U ) |
13 |
1 2 3 4 5 6
|
dihffval |
|- ( K e. V -> ( DIsoH ` K ) = ( w e. H |-> ( x e. B |-> if ( x .<_ w , ( ( ( DIsoB ` K ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` K ) ` w ) ) A. q e. A ( ( -. q .<_ w /\ ( q .\/ ( x ./\ w ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) ) ) ) ) ) ) |
14 |
13
|
fveq1d |
|- ( K e. V -> ( ( DIsoH ` K ) ` W ) = ( ( w e. H |-> ( x e. B |-> if ( x .<_ w , ( ( ( DIsoB ` K ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` K ) ` w ) ) A. q e. A ( ( -. q .<_ w /\ ( q .\/ ( x ./\ w ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) ) ) ) ) ) ` W ) ) |
15 |
7 14
|
eqtrid |
|- ( K e. V -> I = ( ( w e. H |-> ( x e. B |-> if ( x .<_ w , ( ( ( DIsoB ` K ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` K ) ` w ) ) A. q e. A ( ( -. q .<_ w /\ ( q .\/ ( x ./\ w ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) ) ) ) ) ) ` W ) ) |
16 |
|
breq2 |
|- ( w = W -> ( x .<_ w <-> x .<_ W ) ) |
17 |
|
fveq2 |
|- ( w = W -> ( ( DIsoB ` K ) ` w ) = ( ( DIsoB ` K ) ` W ) ) |
18 |
17 8
|
eqtr4di |
|- ( w = W -> ( ( DIsoB ` K ) ` w ) = D ) |
19 |
18
|
fveq1d |
|- ( w = W -> ( ( ( DIsoB ` K ) ` w ) ` x ) = ( D ` x ) ) |
20 |
|
fveq2 |
|- ( w = W -> ( ( DVecH ` K ) ` w ) = ( ( DVecH ` K ) ` W ) ) |
21 |
20 10
|
eqtr4di |
|- ( w = W -> ( ( DVecH ` K ) ` w ) = U ) |
22 |
21
|
fveq2d |
|- ( w = W -> ( LSubSp ` ( ( DVecH ` K ) ` w ) ) = ( LSubSp ` U ) ) |
23 |
22 11
|
eqtr4di |
|- ( w = W -> ( LSubSp ` ( ( DVecH ` K ) ` w ) ) = S ) |
24 |
|
breq2 |
|- ( w = W -> ( q .<_ w <-> q .<_ W ) ) |
25 |
24
|
notbid |
|- ( w = W -> ( -. q .<_ w <-> -. q .<_ W ) ) |
26 |
|
oveq2 |
|- ( w = W -> ( x ./\ w ) = ( x ./\ W ) ) |
27 |
26
|
oveq2d |
|- ( w = W -> ( q .\/ ( x ./\ w ) ) = ( q .\/ ( x ./\ W ) ) ) |
28 |
27
|
eqeq1d |
|- ( w = W -> ( ( q .\/ ( x ./\ w ) ) = x <-> ( q .\/ ( x ./\ W ) ) = x ) ) |
29 |
25 28
|
anbi12d |
|- ( w = W -> ( ( -. q .<_ w /\ ( q .\/ ( x ./\ w ) ) = x ) <-> ( -. q .<_ W /\ ( q .\/ ( x ./\ W ) ) = x ) ) ) |
30 |
21
|
fveq2d |
|- ( w = W -> ( LSSum ` ( ( DVecH ` K ) ` w ) ) = ( LSSum ` U ) ) |
31 |
30 12
|
eqtr4di |
|- ( w = W -> ( LSSum ` ( ( DVecH ` K ) ` w ) ) = .(+) ) |
32 |
|
fveq2 |
|- ( w = W -> ( ( DIsoC ` K ) ` w ) = ( ( DIsoC ` K ) ` W ) ) |
33 |
32 9
|
eqtr4di |
|- ( w = W -> ( ( DIsoC ` K ) ` w ) = C ) |
34 |
33
|
fveq1d |
|- ( w = W -> ( ( ( DIsoC ` K ) ` w ) ` q ) = ( C ` q ) ) |
35 |
18 26
|
fveq12d |
|- ( w = W -> ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) = ( D ` ( x ./\ W ) ) ) |
36 |
31 34 35
|
oveq123d |
|- ( w = W -> ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) = ( ( C ` q ) .(+) ( D ` ( x ./\ W ) ) ) ) |
37 |
36
|
eqeq2d |
|- ( w = W -> ( u = ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) <-> u = ( ( C ` q ) .(+) ( D ` ( x ./\ W ) ) ) ) ) |
38 |
29 37
|
imbi12d |
|- ( w = W -> ( ( ( -. q .<_ w /\ ( q .\/ ( x ./\ w ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) ) <-> ( ( -. q .<_ W /\ ( q .\/ ( x ./\ W ) ) = x ) -> u = ( ( C ` q ) .(+) ( D ` ( x ./\ W ) ) ) ) ) ) |
39 |
38
|
ralbidv |
|- ( w = W -> ( A. q e. A ( ( -. q .<_ w /\ ( q .\/ ( x ./\ w ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) ) <-> A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( x ./\ W ) ) = x ) -> u = ( ( C ` q ) .(+) ( D ` ( x ./\ W ) ) ) ) ) ) |
40 |
23 39
|
riotaeqbidv |
|- ( w = W -> ( iota_ u e. ( LSubSp ` ( ( DVecH ` K ) ` w ) ) A. q e. A ( ( -. q .<_ w /\ ( q .\/ ( x ./\ w ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) ) ) = ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( x ./\ W ) ) = x ) -> u = ( ( C ` q ) .(+) ( D ` ( x ./\ W ) ) ) ) ) ) |
41 |
16 19 40
|
ifbieq12d |
|- ( w = W -> if ( x .<_ w , ( ( ( DIsoB ` K ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` K ) ` w ) ) A. q e. A ( ( -. q .<_ w /\ ( q .\/ ( x ./\ w ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) ) ) ) = if ( x .<_ W , ( D ` x ) , ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( x ./\ W ) ) = x ) -> u = ( ( C ` q ) .(+) ( D ` ( x ./\ W ) ) ) ) ) ) ) |
42 |
41
|
mpteq2dv |
|- ( w = W -> ( x e. B |-> if ( x .<_ w , ( ( ( DIsoB ` K ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` K ) ` w ) ) A. q e. A ( ( -. q .<_ w /\ ( q .\/ ( x ./\ w ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) ) ) ) ) = ( x e. B |-> if ( x .<_ W , ( D ` x ) , ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( x ./\ W ) ) = x ) -> u = ( ( C ` q ) .(+) ( D ` ( x ./\ W ) ) ) ) ) ) ) ) |
43 |
|
eqid |
|- ( w e. H |-> ( x e. B |-> if ( x .<_ w , ( ( ( DIsoB ` K ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` K ) ` w ) ) A. q e. A ( ( -. q .<_ w /\ ( q .\/ ( x ./\ w ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) ) ) ) ) ) = ( w e. H |-> ( x e. B |-> if ( x .<_ w , ( ( ( DIsoB ` K ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` K ) ` w ) ) A. q e. A ( ( -. q .<_ w /\ ( q .\/ ( x ./\ w ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) ) ) ) ) ) |
44 |
42 43 1
|
mptfvmpt |
|- ( W e. H -> ( ( w e. H |-> ( x e. B |-> if ( x .<_ w , ( ( ( DIsoB ` K ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` K ) ` w ) ) A. q e. A ( ( -. q .<_ w /\ ( q .\/ ( x ./\ w ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) ) ) ) ) ) ` W ) = ( x e. B |-> if ( x .<_ W , ( D ` x ) , ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( x ./\ W ) ) = x ) -> u = ( ( C ` q ) .(+) ( D ` ( x ./\ W ) ) ) ) ) ) ) ) |
45 |
15 44
|
sylan9eq |
|- ( ( K e. V /\ W e. H ) -> I = ( x e. B |-> if ( x .<_ W , ( D ` x ) , ( iota_ u e. S A. q e. A ( ( -. q .<_ W /\ ( q .\/ ( x ./\ W ) ) = x ) -> u = ( ( C ` q ) .(+) ( D ` ( x ./\ W ) ) ) ) ) ) ) ) |