Step |
Hyp |
Ref |
Expression |
1 |
|
dihval.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihval.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dihval.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
dihval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
dihval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
dihval.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihval.d |
⊢ 𝐷 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
dihval.c |
⊢ 𝐶 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
dihval.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
dihval.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
12 |
|
dihval.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
13 |
1 2 3 4 5 6
|
dihffval |
⊢ ( 𝐾 ∈ 𝑉 → ( DIsoH ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ≤ 𝑤 , ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑤 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) ) ) ) ) ) ) |
14 |
13
|
fveq1d |
⊢ ( 𝐾 ∈ 𝑉 → ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ≤ 𝑤 , ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑤 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) ) ) ) ) ) ‘ 𝑊 ) ) |
15 |
7 14
|
syl5eq |
⊢ ( 𝐾 ∈ 𝑉 → 𝐼 = ( ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ≤ 𝑤 , ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑤 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) ) ) ) ) ) ‘ 𝑊 ) ) |
16 |
|
breq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ≤ 𝑤 ↔ 𝑥 ≤ 𝑊 ) ) |
17 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ) |
18 |
17 8
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) = 𝐷 ) |
19 |
18
|
fveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) = ( 𝐷 ‘ 𝑥 ) ) |
20 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
21 |
20 10
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) = 𝑈 ) |
22 |
21
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) = ( LSubSp ‘ 𝑈 ) ) |
23 |
22 11
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) = 𝑆 ) |
24 |
|
breq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝑞 ≤ 𝑤 ↔ 𝑞 ≤ 𝑊 ) ) |
25 |
24
|
notbid |
⊢ ( 𝑤 = 𝑊 → ( ¬ 𝑞 ≤ 𝑤 ↔ ¬ 𝑞 ≤ 𝑊 ) ) |
26 |
|
oveq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ∧ 𝑤 ) = ( 𝑥 ∧ 𝑊 ) ) |
27 |
26
|
oveq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = ( 𝑞 ∨ ( 𝑥 ∧ 𝑊 ) ) ) |
28 |
27
|
eqeq1d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ↔ ( 𝑞 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) ) |
29 |
25 28
|
anbi12d |
⊢ ( 𝑤 = 𝑊 → ( ( ¬ 𝑞 ≤ 𝑤 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ) ↔ ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) ) ) |
30 |
21
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) = ( LSSum ‘ 𝑈 ) ) |
31 |
30 12
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) = ⊕ ) |
32 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ) |
33 |
32 9
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) = 𝐶 ) |
34 |
33
|
fveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) = ( 𝐶 ‘ 𝑞 ) ) |
35 |
18 26
|
fveq12d |
⊢ ( 𝑤 = 𝑊 → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) = ( 𝐷 ‘ ( 𝑥 ∧ 𝑊 ) ) ) |
36 |
31 34 35
|
oveq123d |
⊢ ( 𝑤 = 𝑊 → ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑥 ∧ 𝑊 ) ) ) ) |
37 |
36
|
eqeq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) ↔ 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑥 ∧ 𝑊 ) ) ) ) ) |
38 |
29 37
|
imbi12d |
⊢ ( 𝑤 = 𝑊 → ( ( ( ¬ 𝑞 ≤ 𝑤 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) ) ↔ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑥 ∧ 𝑊 ) ) ) ) ) ) |
39 |
38
|
ralbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑤 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) ) ↔ ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑥 ∧ 𝑊 ) ) ) ) ) ) |
40 |
23 39
|
riotaeqbidv |
⊢ ( 𝑤 = 𝑊 → ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑤 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) ) ) = ( ℩ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑥 ∧ 𝑊 ) ) ) ) ) ) |
41 |
16 19 40
|
ifbieq12d |
⊢ ( 𝑤 = 𝑊 → if ( 𝑥 ≤ 𝑤 , ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑤 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) ) ) ) = if ( 𝑥 ≤ 𝑊 , ( 𝐷 ‘ 𝑥 ) , ( ℩ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑥 ∧ 𝑊 ) ) ) ) ) ) ) |
42 |
41
|
mpteq2dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ≤ 𝑤 , ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑤 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) ) ) ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ≤ 𝑊 , ( 𝐷 ‘ 𝑥 ) , ( ℩ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑥 ∧ 𝑊 ) ) ) ) ) ) ) ) |
43 |
|
eqid |
⊢ ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ≤ 𝑤 , ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑤 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) ) ) ) ) ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ≤ 𝑤 , ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑤 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) ) ) ) ) ) |
44 |
42 43 1
|
mptfvmpt |
⊢ ( 𝑊 ∈ 𝐻 → ( ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ≤ 𝑤 , ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑤 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) ) ) ) ) ) ‘ 𝑊 ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ≤ 𝑊 , ( 𝐷 ‘ 𝑥 ) , ( ℩ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑥 ∧ 𝑊 ) ) ) ) ) ) ) ) |
45 |
15 44
|
sylan9eq |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → 𝐼 = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ≤ 𝑊 , ( 𝐷 ‘ 𝑥 ) , ( ℩ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑥 ∧ 𝑊 ) ) ) ) ) ) ) ) |