Step |
Hyp |
Ref |
Expression |
1 |
|
dihval.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihval.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dihval.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
dihval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
dihval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
elex |
⊢ ( 𝐾 ∈ 𝑉 → 𝐾 ∈ V ) |
8 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = ( LHyp ‘ 𝐾 ) ) |
9 |
8 6
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = 𝐻 ) |
10 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = ( Base ‘ 𝐾 ) ) |
11 |
10 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = 𝐵 ) |
12 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ( le ‘ 𝐾 ) ) |
13 |
12 2
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ≤ ) |
14 |
13
|
breqd |
⊢ ( 𝑘 = 𝐾 → ( 𝑥 ( le ‘ 𝑘 ) 𝑤 ↔ 𝑥 ≤ 𝑤 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( DIsoB ‘ 𝑘 ) = ( DIsoB ‘ 𝐾 ) ) |
16 |
15
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ) |
17 |
16
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) ) |
18 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( DVecH ‘ 𝑘 ) = ( DVecH ‘ 𝐾 ) ) |
19 |
18
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝑘 = 𝐾 → ( LSubSp ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) = ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ) |
21 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) ) |
22 |
21 5
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 ) |
23 |
13
|
breqd |
⊢ ( 𝑘 = 𝐾 → ( 𝑞 ( le ‘ 𝑘 ) 𝑤 ↔ 𝑞 ≤ 𝑤 ) ) |
24 |
23
|
notbid |
⊢ ( 𝑘 = 𝐾 → ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ↔ ¬ 𝑞 ≤ 𝑤 ) ) |
25 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ( join ‘ 𝐾 ) ) |
26 |
25 3
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ∨ ) |
27 |
|
eqidd |
⊢ ( 𝑘 = 𝐾 → 𝑞 = 𝑞 ) |
28 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( meet ‘ 𝑘 ) = ( meet ‘ 𝐾 ) ) |
29 |
28 4
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( meet ‘ 𝑘 ) = ∧ ) |
30 |
29
|
oveqd |
⊢ ( 𝑘 = 𝐾 → ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) = ( 𝑥 ∧ 𝑤 ) ) |
31 |
26 27 30
|
oveq123d |
⊢ ( 𝑘 = 𝐾 → ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) ) |
32 |
31
|
eqeq1d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ↔ ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ) ) |
33 |
24 32
|
anbi12d |
⊢ ( 𝑘 = 𝐾 → ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) ↔ ( ¬ 𝑞 ≤ 𝑤 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ) ) ) |
34 |
19
|
fveq2d |
⊢ ( 𝑘 = 𝐾 → ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) = ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ) |
35 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( DIsoC ‘ 𝑘 ) = ( DIsoC ‘ 𝐾 ) ) |
36 |
35
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ) |
37 |
36
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) = ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ) |
38 |
16 30
|
fveq12d |
⊢ ( 𝑘 = 𝐾 → ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) |
39 |
34 37 38
|
oveq123d |
⊢ ( 𝑘 = 𝐾 → ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) ) |
40 |
39
|
eqeq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ↔ 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) ) ) |
41 |
33 40
|
imbi12d |
⊢ ( 𝑘 = 𝐾 → ( ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ↔ ( ( ¬ 𝑞 ≤ 𝑤 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) ) ) ) |
42 |
22 41
|
raleqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ↔ ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑤 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) ) ) ) |
43 |
20 42
|
riotaeqbidv |
⊢ ( 𝑘 = 𝐾 → ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) = ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑤 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) ) ) ) |
44 |
14 17 43
|
ifbieq12d |
⊢ ( 𝑘 = 𝐾 → if ( 𝑥 ( le ‘ 𝑘 ) 𝑤 , ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) ) = if ( 𝑥 ≤ 𝑤 , ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑤 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) ) ) ) ) |
45 |
11 44
|
mpteq12dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑥 ∈ ( Base ‘ 𝑘 ) ↦ if ( 𝑥 ( le ‘ 𝑘 ) 𝑤 , ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) ) ) = ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ≤ 𝑤 , ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑤 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) ) ) ) ) ) |
46 |
9 45
|
mpteq12dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑘 ) ↦ if ( 𝑥 ( le ‘ 𝑘 ) 𝑤 , ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) ) ) ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ≤ 𝑤 , ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑤 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) ) ) ) ) ) ) |
47 |
|
df-dih |
⊢ DIsoH = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑘 ) ↦ if ( 𝑥 ( le ‘ 𝑘 ) 𝑤 , ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) ) ) ) ) |
48 |
46 47 6
|
mptfvmpt |
⊢ ( 𝐾 ∈ V → ( DIsoH ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ≤ 𝑤 , ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑤 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) ) ) ) ) ) ) |
49 |
7 48
|
syl |
⊢ ( 𝐾 ∈ 𝑉 → ( DIsoH ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝐵 ↦ if ( 𝑥 ≤ 𝑤 , ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑤 ∧ ( 𝑞 ∨ ( 𝑥 ∧ 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( 𝑥 ∧ 𝑤 ) ) ) ) ) ) ) ) ) |