Metamath Proof Explorer


Theorem dihffval

Description: The isomorphism H for a lattice K . Definition of isomorphism map in Crawley p. 122 line 3. (Contributed by NM, 28-Jan-2014)

Ref Expression
Hypotheses dihval.b B = Base K
dihval.l ˙ = K
dihval.j ˙ = join K
dihval.m ˙ = meet K
dihval.a A = Atoms K
dihval.h H = LHyp K
Assertion dihffval K V DIsoH K = w H x B if x ˙ w DIsoB K w x ι u LSubSp DVecH K w | q A ¬ q ˙ w q ˙ x ˙ w = x u = DIsoC K w q LSSum DVecH K w DIsoB K w x ˙ w

Proof

Step Hyp Ref Expression
1 dihval.b B = Base K
2 dihval.l ˙ = K
3 dihval.j ˙ = join K
4 dihval.m ˙ = meet K
5 dihval.a A = Atoms K
6 dihval.h H = LHyp K
7 elex K V K V
8 fveq2 k = K LHyp k = LHyp K
9 8 6 eqtr4di k = K LHyp k = H
10 fveq2 k = K Base k = Base K
11 10 1 eqtr4di k = K Base k = B
12 fveq2 k = K k = K
13 12 2 eqtr4di k = K k = ˙
14 13 breqd k = K x k w x ˙ w
15 fveq2 k = K DIsoB k = DIsoB K
16 15 fveq1d k = K DIsoB k w = DIsoB K w
17 16 fveq1d k = K DIsoB k w x = DIsoB K w x
18 fveq2 k = K DVecH k = DVecH K
19 18 fveq1d k = K DVecH k w = DVecH K w
20 19 fveq2d k = K LSubSp DVecH k w = LSubSp DVecH K w
21 fveq2 k = K Atoms k = Atoms K
22 21 5 eqtr4di k = K Atoms k = A
23 13 breqd k = K q k w q ˙ w
24 23 notbid k = K ¬ q k w ¬ q ˙ w
25 fveq2 k = K join k = join K
26 25 3 eqtr4di k = K join k = ˙
27 eqidd k = K q = q
28 fveq2 k = K meet k = meet K
29 28 4 eqtr4di k = K meet k = ˙
30 29 oveqd k = K x meet k w = x ˙ w
31 26 27 30 oveq123d k = K q join k x meet k w = q ˙ x ˙ w
32 31 eqeq1d k = K q join k x meet k w = x q ˙ x ˙ w = x
33 24 32 anbi12d k = K ¬ q k w q join k x meet k w = x ¬ q ˙ w q ˙ x ˙ w = x
34 19 fveq2d k = K LSSum DVecH k w = LSSum DVecH K w
35 fveq2 k = K DIsoC k = DIsoC K
36 35 fveq1d k = K DIsoC k w = DIsoC K w
37 36 fveq1d k = K DIsoC k w q = DIsoC K w q
38 16 30 fveq12d k = K DIsoB k w x meet k w = DIsoB K w x ˙ w
39 34 37 38 oveq123d k = K DIsoC k w q LSSum DVecH k w DIsoB k w x meet k w = DIsoC K w q LSSum DVecH K w DIsoB K w x ˙ w
40 39 eqeq2d k = K u = DIsoC k w q LSSum DVecH k w DIsoB k w x meet k w u = DIsoC K w q LSSum DVecH K w DIsoB K w x ˙ w
41 33 40 imbi12d k = K ¬ q k w q join k x meet k w = x u = DIsoC k w q LSSum DVecH k w DIsoB k w x meet k w ¬ q ˙ w q ˙ x ˙ w = x u = DIsoC K w q LSSum DVecH K w DIsoB K w x ˙ w
42 22 41 raleqbidv k = K q Atoms k ¬ q k w q join k x meet k w = x u = DIsoC k w q LSSum DVecH k w DIsoB k w x meet k w q A ¬ q ˙ w q ˙ x ˙ w = x u = DIsoC K w q LSSum DVecH K w DIsoB K w x ˙ w
43 20 42 riotaeqbidv k = K ι u LSubSp DVecH k w | q Atoms k ¬ q k w q join k x meet k w = x u = DIsoC k w q LSSum DVecH k w DIsoB k w x meet k w = ι u LSubSp DVecH K w | q A ¬ q ˙ w q ˙ x ˙ w = x u = DIsoC K w q LSSum DVecH K w DIsoB K w x ˙ w
44 14 17 43 ifbieq12d k = K if x k w DIsoB k w x ι u LSubSp DVecH k w | q Atoms k ¬ q k w q join k x meet k w = x u = DIsoC k w q LSSum DVecH k w DIsoB k w x meet k w = if x ˙ w DIsoB K w x ι u LSubSp DVecH K w | q A ¬ q ˙ w q ˙ x ˙ w = x u = DIsoC K w q LSSum DVecH K w DIsoB K w x ˙ w
45 11 44 mpteq12dv k = K x Base k if x k w DIsoB k w x ι u LSubSp DVecH k w | q Atoms k ¬ q k w q join k x meet k w = x u = DIsoC k w q LSSum DVecH k w DIsoB k w x meet k w = x B if x ˙ w DIsoB K w x ι u LSubSp DVecH K w | q A ¬ q ˙ w q ˙ x ˙ w = x u = DIsoC K w q LSSum DVecH K w DIsoB K w x ˙ w
46 9 45 mpteq12dv k = K w LHyp k x Base k if x k w DIsoB k w x ι u LSubSp DVecH k w | q Atoms k ¬ q k w q join k x meet k w = x u = DIsoC k w q LSSum DVecH k w DIsoB k w x meet k w = w H x B if x ˙ w DIsoB K w x ι u LSubSp DVecH K w | q A ¬ q ˙ w q ˙ x ˙ w = x u = DIsoC K w q LSSum DVecH K w DIsoB K w x ˙ w
47 df-dih DIsoH = k V w LHyp k x Base k if x k w DIsoB k w x ι u LSubSp DVecH k w | q Atoms k ¬ q k w q join k x meet k w = x u = DIsoC k w q LSSum DVecH k w DIsoB k w x meet k w
48 46 47 6 mptfvmpt K V DIsoH K = w H x B if x ˙ w DIsoB K w x ι u LSubSp DVecH K w | q A ¬ q ˙ w q ˙ x ˙ w = x u = DIsoC K w q LSSum DVecH K w DIsoB K w x ˙ w
49 7 48 syl K V DIsoH K = w H x B if x ˙ w DIsoB K w x ι u LSubSp DVecH K w | q A ¬ q ˙ w q ˙ x ˙ w = x u = DIsoC K w q LSSum DVecH K w DIsoB K w x ˙ w