Metamath Proof Explorer


Definition df-dih

Description: Define isomorphism H. (Contributed by NM, 28-Jan-2014)

Ref Expression
Assertion df-dih DIsoH=kVwLHypkxBasekifxkwDIsoBkwxιuLSubSpDVecHkw|qAtomsk¬qkwqjoinkxmeetkw=xu=DIsoCkwqLSSumDVecHkwDIsoBkwxmeetkw

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdih classDIsoH
1 vk setvark
2 cvv classV
3 vw setvarw
4 clh classLHyp
5 1 cv setvark
6 5 4 cfv classLHypk
7 vx setvarx
8 cbs classBase
9 5 8 cfv classBasek
10 7 cv setvarx
11 cple classle
12 5 11 cfv classk
13 3 cv setvarw
14 10 13 12 wbr wffxkw
15 cdib classDIsoB
16 5 15 cfv classDIsoBk
17 13 16 cfv classDIsoBkw
18 10 17 cfv classDIsoBkwx
19 vu setvaru
20 clss classLSubSp
21 cdvh classDVecH
22 5 21 cfv classDVecHk
23 13 22 cfv classDVecHkw
24 23 20 cfv classLSubSpDVecHkw
25 vq setvarq
26 catm classAtoms
27 5 26 cfv classAtomsk
28 25 cv setvarq
29 28 13 12 wbr wffqkw
30 29 wn wff¬qkw
31 cjn classjoin
32 5 31 cfv classjoink
33 cmee classmeet
34 5 33 cfv classmeetk
35 10 13 34 co classxmeetkw
36 28 35 32 co classqjoinkxmeetkw
37 36 10 wceq wffqjoinkxmeetkw=x
38 30 37 wa wff¬qkwqjoinkxmeetkw=x
39 19 cv setvaru
40 cdic classDIsoC
41 5 40 cfv classDIsoCk
42 13 41 cfv classDIsoCkw
43 28 42 cfv classDIsoCkwq
44 clsm classLSSum
45 23 44 cfv classLSSumDVecHkw
46 35 17 cfv classDIsoBkwxmeetkw
47 43 46 45 co classDIsoCkwqLSSumDVecHkwDIsoBkwxmeetkw
48 39 47 wceq wffu=DIsoCkwqLSSumDVecHkwDIsoBkwxmeetkw
49 38 48 wi wff¬qkwqjoinkxmeetkw=xu=DIsoCkwqLSSumDVecHkwDIsoBkwxmeetkw
50 49 25 27 wral wffqAtomsk¬qkwqjoinkxmeetkw=xu=DIsoCkwqLSSumDVecHkwDIsoBkwxmeetkw
51 50 19 24 crio classιuLSubSpDVecHkw|qAtomsk¬qkwqjoinkxmeetkw=xu=DIsoCkwqLSSumDVecHkwDIsoBkwxmeetkw
52 14 18 51 cif classifxkwDIsoBkwxιuLSubSpDVecHkw|qAtomsk¬qkwqjoinkxmeetkw=xu=DIsoCkwqLSSumDVecHkwDIsoBkwxmeetkw
53 7 9 52 cmpt classxBasekifxkwDIsoBkwxιuLSubSpDVecHkw|qAtomsk¬qkwqjoinkxmeetkw=xu=DIsoCkwqLSSumDVecHkwDIsoBkwxmeetkw
54 3 6 53 cmpt classwLHypkxBasekifxkwDIsoBkwxιuLSubSpDVecHkw|qAtomsk¬qkwqjoinkxmeetkw=xu=DIsoCkwqLSSumDVecHkwDIsoBkwxmeetkw
55 1 2 54 cmpt classkVwLHypkxBasekifxkwDIsoBkwxιuLSubSpDVecHkw|qAtomsk¬qkwqjoinkxmeetkw=xu=DIsoCkwqLSSumDVecHkwDIsoBkwxmeetkw
56 0 55 wceq wffDIsoH=kVwLHypkxBasekifxkwDIsoBkwxιuLSubSpDVecHkw|qAtomsk¬qkwqjoinkxmeetkw=xu=DIsoCkwqLSSumDVecHkwDIsoBkwxmeetkw