Metamath Proof Explorer


Definition df-dih

Description: Define isomorphism H. (Contributed by NM, 28-Jan-2014)

Ref Expression
Assertion df-dih DIsoH = k V w LHyp k x Base k if x k w DIsoB k w x ι u LSubSp DVecH k w | q Atoms k ¬ q k w q join k x meet k w = x u = DIsoC k w q LSSum DVecH k w DIsoB k w x meet k w

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdih class DIsoH
1 vk setvar k
2 cvv class V
3 vw setvar w
4 clh class LHyp
5 1 cv setvar k
6 5 4 cfv class LHyp k
7 vx setvar x
8 cbs class Base
9 5 8 cfv class Base k
10 7 cv setvar x
11 cple class le
12 5 11 cfv class k
13 3 cv setvar w
14 10 13 12 wbr wff x k w
15 cdib class DIsoB
16 5 15 cfv class DIsoB k
17 13 16 cfv class DIsoB k w
18 10 17 cfv class DIsoB k w x
19 vu setvar u
20 clss class LSubSp
21 cdvh class DVecH
22 5 21 cfv class DVecH k
23 13 22 cfv class DVecH k w
24 23 20 cfv class LSubSp DVecH k w
25 vq setvar q
26 catm class Atoms
27 5 26 cfv class Atoms k
28 25 cv setvar q
29 28 13 12 wbr wff q k w
30 29 wn wff ¬ q k w
31 cjn class join
32 5 31 cfv class join k
33 cmee class meet
34 5 33 cfv class meet k
35 10 13 34 co class x meet k w
36 28 35 32 co class q join k x meet k w
37 36 10 wceq wff q join k x meet k w = x
38 30 37 wa wff ¬ q k w q join k x meet k w = x
39 19 cv setvar u
40 cdic class DIsoC
41 5 40 cfv class DIsoC k
42 13 41 cfv class DIsoC k w
43 28 42 cfv class DIsoC k w q
44 clsm class LSSum
45 23 44 cfv class LSSum DVecH k w
46 35 17 cfv class DIsoB k w x meet k w
47 43 46 45 co class DIsoC k w q LSSum DVecH k w DIsoB k w x meet k w
48 39 47 wceq wff u = DIsoC k w q LSSum DVecH k w DIsoB k w x meet k w
49 38 48 wi wff ¬ q k w q join k x meet k w = x u = DIsoC k w q LSSum DVecH k w DIsoB k w x meet k w
50 49 25 27 wral wff q Atoms k ¬ q k w q join k x meet k w = x u = DIsoC k w q LSSum DVecH k w DIsoB k w x meet k w
51 50 19 24 crio class ι u LSubSp DVecH k w | q Atoms k ¬ q k w q join k x meet k w = x u = DIsoC k w q LSSum DVecH k w DIsoB k w x meet k w
52 14 18 51 cif class if x k w DIsoB k w x ι u LSubSp DVecH k w | q Atoms k ¬ q k w q join k x meet k w = x u = DIsoC k w q LSSum DVecH k w DIsoB k w x meet k w
53 7 9 52 cmpt class x Base k if x k w DIsoB k w x ι u LSubSp DVecH k w | q Atoms k ¬ q k w q join k x meet k w = x u = DIsoC k w q LSSum DVecH k w DIsoB k w x meet k w
54 3 6 53 cmpt class w LHyp k x Base k if x k w DIsoB k w x ι u LSubSp DVecH k w | q Atoms k ¬ q k w q join k x meet k w = x u = DIsoC k w q LSSum DVecH k w DIsoB k w x meet k w
55 1 2 54 cmpt class k V w LHyp k x Base k if x k w DIsoB k w x ι u LSubSp DVecH k w | q Atoms k ¬ q k w q join k x meet k w = x u = DIsoC k w q LSSum DVecH k w DIsoB k w x meet k w
56 0 55 wceq wff DIsoH = k V w LHyp k x Base k if x k w DIsoB k w x ι u LSubSp DVecH k w | q Atoms k ¬ q k w q join k x meet k w = x u = DIsoC k w q LSSum DVecH k w DIsoB k w x meet k w