Metamath Proof Explorer


Definition df-dih

Description: Define isomorphism H. (Contributed by NM, 28-Jan-2014)

Ref Expression
Assertion df-dih DIsoH = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑘 ) ↦ if ( 𝑥 ( le ‘ 𝑘 ) 𝑤 , ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdih DIsoH
1 vk 𝑘
2 cvv V
3 vw 𝑤
4 clh LHyp
5 1 cv 𝑘
6 5 4 cfv ( LHyp ‘ 𝑘 )
7 vx 𝑥
8 cbs Base
9 5 8 cfv ( Base ‘ 𝑘 )
10 7 cv 𝑥
11 cple le
12 5 11 cfv ( le ‘ 𝑘 )
13 3 cv 𝑤
14 10 13 12 wbr 𝑥 ( le ‘ 𝑘 ) 𝑤
15 cdib DIsoB
16 5 15 cfv ( DIsoB ‘ 𝑘 )
17 13 16 cfv ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 )
18 10 17 cfv ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 )
19 vu 𝑢
20 clss LSubSp
21 cdvh DVecH
22 5 21 cfv ( DVecH ‘ 𝑘 )
23 13 22 cfv ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )
24 23 20 cfv ( LSubSp ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )
25 vq 𝑞
26 catm Atoms
27 5 26 cfv ( Atoms ‘ 𝑘 )
28 25 cv 𝑞
29 28 13 12 wbr 𝑞 ( le ‘ 𝑘 ) 𝑤
30 29 wn ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤
31 cjn join
32 5 31 cfv ( join ‘ 𝑘 )
33 cmee meet
34 5 33 cfv ( meet ‘ 𝑘 )
35 10 13 34 co ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 )
36 28 35 32 co ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) )
37 36 10 wceq ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥
38 30 37 wa ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 )
39 19 cv 𝑢
40 cdic DIsoC
41 5 40 cfv ( DIsoC ‘ 𝑘 )
42 13 41 cfv ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 )
43 28 42 cfv ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 )
44 clsm LSSum
45 23 44 cfv ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )
46 35 17 cfv ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) )
47 43 46 45 co ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) )
48 39 47 wceq 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) )
49 38 48 wi ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) )
50 49 25 27 wral 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) )
51 50 19 24 crio ( 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) )
52 14 18 51 cif if ( 𝑥 ( le ‘ 𝑘 ) 𝑤 , ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) )
53 7 9 52 cmpt ( 𝑥 ∈ ( Base ‘ 𝑘 ) ↦ if ( 𝑥 ( le ‘ 𝑘 ) 𝑤 , ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) ) )
54 3 6 53 cmpt ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑘 ) ↦ if ( 𝑥 ( le ‘ 𝑘 ) 𝑤 , ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) ) ) )
55 1 2 54 cmpt ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑘 ) ↦ if ( 𝑥 ( le ‘ 𝑘 ) 𝑤 , ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) ) ) ) )
56 0 55 wceq DIsoH = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑘 ) ↦ if ( 𝑥 ( le ‘ 𝑘 ) 𝑤 , ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) ) ) ) )