Step |
Hyp |
Ref |
Expression |
0 |
|
cdih |
⊢ DIsoH |
1 |
|
vk |
⊢ 𝑘 |
2 |
|
cvv |
⊢ V |
3 |
|
vw |
⊢ 𝑤 |
4 |
|
clh |
⊢ LHyp |
5 |
1
|
cv |
⊢ 𝑘 |
6 |
5 4
|
cfv |
⊢ ( LHyp ‘ 𝑘 ) |
7 |
|
vx |
⊢ 𝑥 |
8 |
|
cbs |
⊢ Base |
9 |
5 8
|
cfv |
⊢ ( Base ‘ 𝑘 ) |
10 |
7
|
cv |
⊢ 𝑥 |
11 |
|
cple |
⊢ le |
12 |
5 11
|
cfv |
⊢ ( le ‘ 𝑘 ) |
13 |
3
|
cv |
⊢ 𝑤 |
14 |
10 13 12
|
wbr |
⊢ 𝑥 ( le ‘ 𝑘 ) 𝑤 |
15 |
|
cdib |
⊢ DIsoB |
16 |
5 15
|
cfv |
⊢ ( DIsoB ‘ 𝑘 ) |
17 |
13 16
|
cfv |
⊢ ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) |
18 |
10 17
|
cfv |
⊢ ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) |
19 |
|
vu |
⊢ 𝑢 |
20 |
|
clss |
⊢ LSubSp |
21 |
|
cdvh |
⊢ DVecH |
22 |
5 21
|
cfv |
⊢ ( DVecH ‘ 𝑘 ) |
23 |
13 22
|
cfv |
⊢ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) |
24 |
23 20
|
cfv |
⊢ ( LSubSp ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) |
25 |
|
vq |
⊢ 𝑞 |
26 |
|
catm |
⊢ Atoms |
27 |
5 26
|
cfv |
⊢ ( Atoms ‘ 𝑘 ) |
28 |
25
|
cv |
⊢ 𝑞 |
29 |
28 13 12
|
wbr |
⊢ 𝑞 ( le ‘ 𝑘 ) 𝑤 |
30 |
29
|
wn |
⊢ ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 |
31 |
|
cjn |
⊢ join |
32 |
5 31
|
cfv |
⊢ ( join ‘ 𝑘 ) |
33 |
|
cmee |
⊢ meet |
34 |
5 33
|
cfv |
⊢ ( meet ‘ 𝑘 ) |
35 |
10 13 34
|
co |
⊢ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) |
36 |
28 35 32
|
co |
⊢ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) |
37 |
36 10
|
wceq |
⊢ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 |
38 |
30 37
|
wa |
⊢ ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) |
39 |
19
|
cv |
⊢ 𝑢 |
40 |
|
cdic |
⊢ DIsoC |
41 |
5 40
|
cfv |
⊢ ( DIsoC ‘ 𝑘 ) |
42 |
13 41
|
cfv |
⊢ ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) |
43 |
28 42
|
cfv |
⊢ ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) |
44 |
|
clsm |
⊢ LSSum |
45 |
23 44
|
cfv |
⊢ ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) |
46 |
35 17
|
cfv |
⊢ ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) |
47 |
43 46 45
|
co |
⊢ ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) |
48 |
39 47
|
wceq |
⊢ 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) |
49 |
38 48
|
wi |
⊢ ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) |
50 |
49 25 27
|
wral |
⊢ ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) |
51 |
50 19 24
|
crio |
⊢ ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) |
52 |
14 18 51
|
cif |
⊢ if ( 𝑥 ( le ‘ 𝑘 ) 𝑤 , ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) ) |
53 |
7 9 52
|
cmpt |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑘 ) ↦ if ( 𝑥 ( le ‘ 𝑘 ) 𝑤 , ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) ) ) |
54 |
3 6 53
|
cmpt |
⊢ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑘 ) ↦ if ( 𝑥 ( le ‘ 𝑘 ) 𝑤 , ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) ) ) ) |
55 |
1 2 54
|
cmpt |
⊢ ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑘 ) ↦ if ( 𝑥 ( le ‘ 𝑘 ) 𝑤 , ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) ) ) ) ) |
56 |
0 55
|
wceq |
⊢ DIsoH = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝑘 ) ↦ if ( 𝑥 ( le ‘ 𝑘 ) 𝑤 , ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑥 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ( ( ¬ 𝑞 ( le ‘ 𝑘 ) 𝑤 ∧ ( 𝑞 ( join ‘ 𝑘 ) ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) = 𝑥 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ( ( ( DIsoB ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 𝑥 ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) ) ) ) ) |