| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cdih |
|- DIsoH |
| 1 |
|
vk |
|- k |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vw |
|- w |
| 4 |
|
clh |
|- LHyp |
| 5 |
1
|
cv |
|- k |
| 6 |
5 4
|
cfv |
|- ( LHyp ` k ) |
| 7 |
|
vx |
|- x |
| 8 |
|
cbs |
|- Base |
| 9 |
5 8
|
cfv |
|- ( Base ` k ) |
| 10 |
7
|
cv |
|- x |
| 11 |
|
cple |
|- le |
| 12 |
5 11
|
cfv |
|- ( le ` k ) |
| 13 |
3
|
cv |
|- w |
| 14 |
10 13 12
|
wbr |
|- x ( le ` k ) w |
| 15 |
|
cdib |
|- DIsoB |
| 16 |
5 15
|
cfv |
|- ( DIsoB ` k ) |
| 17 |
13 16
|
cfv |
|- ( ( DIsoB ` k ) ` w ) |
| 18 |
10 17
|
cfv |
|- ( ( ( DIsoB ` k ) ` w ) ` x ) |
| 19 |
|
vu |
|- u |
| 20 |
|
clss |
|- LSubSp |
| 21 |
|
cdvh |
|- DVecH |
| 22 |
5 21
|
cfv |
|- ( DVecH ` k ) |
| 23 |
13 22
|
cfv |
|- ( ( DVecH ` k ) ` w ) |
| 24 |
23 20
|
cfv |
|- ( LSubSp ` ( ( DVecH ` k ) ` w ) ) |
| 25 |
|
vq |
|- q |
| 26 |
|
catm |
|- Atoms |
| 27 |
5 26
|
cfv |
|- ( Atoms ` k ) |
| 28 |
25
|
cv |
|- q |
| 29 |
28 13 12
|
wbr |
|- q ( le ` k ) w |
| 30 |
29
|
wn |
|- -. q ( le ` k ) w |
| 31 |
|
cjn |
|- join |
| 32 |
5 31
|
cfv |
|- ( join ` k ) |
| 33 |
|
cmee |
|- meet |
| 34 |
5 33
|
cfv |
|- ( meet ` k ) |
| 35 |
10 13 34
|
co |
|- ( x ( meet ` k ) w ) |
| 36 |
28 35 32
|
co |
|- ( q ( join ` k ) ( x ( meet ` k ) w ) ) |
| 37 |
36 10
|
wceq |
|- ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x |
| 38 |
30 37
|
wa |
|- ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) |
| 39 |
19
|
cv |
|- u |
| 40 |
|
cdic |
|- DIsoC |
| 41 |
5 40
|
cfv |
|- ( DIsoC ` k ) |
| 42 |
13 41
|
cfv |
|- ( ( DIsoC ` k ) ` w ) |
| 43 |
28 42
|
cfv |
|- ( ( ( DIsoC ` k ) ` w ) ` q ) |
| 44 |
|
clsm |
|- LSSum |
| 45 |
23 44
|
cfv |
|- ( LSSum ` ( ( DVecH ` k ) ` w ) ) |
| 46 |
35 17
|
cfv |
|- ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) |
| 47 |
43 46 45
|
co |
|- ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) |
| 48 |
39 47
|
wceq |
|- u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) |
| 49 |
38 48
|
wi |
|- ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) |
| 50 |
49 25 27
|
wral |
|- A. q e. ( Atoms ` k ) ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) |
| 51 |
50 19 24
|
crio |
|- ( iota_ u e. ( LSubSp ` ( ( DVecH ` k ) ` w ) ) A. q e. ( Atoms ` k ) ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) ) |
| 52 |
14 18 51
|
cif |
|- if ( x ( le ` k ) w , ( ( ( DIsoB ` k ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` k ) ` w ) ) A. q e. ( Atoms ` k ) ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) ) ) |
| 53 |
7 9 52
|
cmpt |
|- ( x e. ( Base ` k ) |-> if ( x ( le ` k ) w , ( ( ( DIsoB ` k ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` k ) ` w ) ) A. q e. ( Atoms ` k ) ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) ) ) ) |
| 54 |
3 6 53
|
cmpt |
|- ( w e. ( LHyp ` k ) |-> ( x e. ( Base ` k ) |-> if ( x ( le ` k ) w , ( ( ( DIsoB ` k ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` k ) ` w ) ) A. q e. ( Atoms ` k ) ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) ) ) ) ) |
| 55 |
1 2 54
|
cmpt |
|- ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( x e. ( Base ` k ) |-> if ( x ( le ` k ) w , ( ( ( DIsoB ` k ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` k ) ` w ) ) A. q e. ( Atoms ` k ) ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) ) ) ) ) ) |
| 56 |
0 55
|
wceq |
|- DIsoH = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( x e. ( Base ` k ) |-> if ( x ( le ` k ) w , ( ( ( DIsoB ` k ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` k ) ` w ) ) A. q e. ( Atoms ` k ) ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) ) ) ) ) ) |