Step |
Hyp |
Ref |
Expression |
0 |
|
cdih |
|- DIsoH |
1 |
|
vk |
|- k |
2 |
|
cvv |
|- _V |
3 |
|
vw |
|- w |
4 |
|
clh |
|- LHyp |
5 |
1
|
cv |
|- k |
6 |
5 4
|
cfv |
|- ( LHyp ` k ) |
7 |
|
vx |
|- x |
8 |
|
cbs |
|- Base |
9 |
5 8
|
cfv |
|- ( Base ` k ) |
10 |
7
|
cv |
|- x |
11 |
|
cple |
|- le |
12 |
5 11
|
cfv |
|- ( le ` k ) |
13 |
3
|
cv |
|- w |
14 |
10 13 12
|
wbr |
|- x ( le ` k ) w |
15 |
|
cdib |
|- DIsoB |
16 |
5 15
|
cfv |
|- ( DIsoB ` k ) |
17 |
13 16
|
cfv |
|- ( ( DIsoB ` k ) ` w ) |
18 |
10 17
|
cfv |
|- ( ( ( DIsoB ` k ) ` w ) ` x ) |
19 |
|
vu |
|- u |
20 |
|
clss |
|- LSubSp |
21 |
|
cdvh |
|- DVecH |
22 |
5 21
|
cfv |
|- ( DVecH ` k ) |
23 |
13 22
|
cfv |
|- ( ( DVecH ` k ) ` w ) |
24 |
23 20
|
cfv |
|- ( LSubSp ` ( ( DVecH ` k ) ` w ) ) |
25 |
|
vq |
|- q |
26 |
|
catm |
|- Atoms |
27 |
5 26
|
cfv |
|- ( Atoms ` k ) |
28 |
25
|
cv |
|- q |
29 |
28 13 12
|
wbr |
|- q ( le ` k ) w |
30 |
29
|
wn |
|- -. q ( le ` k ) w |
31 |
|
cjn |
|- join |
32 |
5 31
|
cfv |
|- ( join ` k ) |
33 |
|
cmee |
|- meet |
34 |
5 33
|
cfv |
|- ( meet ` k ) |
35 |
10 13 34
|
co |
|- ( x ( meet ` k ) w ) |
36 |
28 35 32
|
co |
|- ( q ( join ` k ) ( x ( meet ` k ) w ) ) |
37 |
36 10
|
wceq |
|- ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x |
38 |
30 37
|
wa |
|- ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) |
39 |
19
|
cv |
|- u |
40 |
|
cdic |
|- DIsoC |
41 |
5 40
|
cfv |
|- ( DIsoC ` k ) |
42 |
13 41
|
cfv |
|- ( ( DIsoC ` k ) ` w ) |
43 |
28 42
|
cfv |
|- ( ( ( DIsoC ` k ) ` w ) ` q ) |
44 |
|
clsm |
|- LSSum |
45 |
23 44
|
cfv |
|- ( LSSum ` ( ( DVecH ` k ) ` w ) ) |
46 |
35 17
|
cfv |
|- ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) |
47 |
43 46 45
|
co |
|- ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) |
48 |
39 47
|
wceq |
|- u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) |
49 |
38 48
|
wi |
|- ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) |
50 |
49 25 27
|
wral |
|- A. q e. ( Atoms ` k ) ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) |
51 |
50 19 24
|
crio |
|- ( iota_ u e. ( LSubSp ` ( ( DVecH ` k ) ` w ) ) A. q e. ( Atoms ` k ) ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) ) |
52 |
14 18 51
|
cif |
|- if ( x ( le ` k ) w , ( ( ( DIsoB ` k ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` k ) ` w ) ) A. q e. ( Atoms ` k ) ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) ) ) |
53 |
7 9 52
|
cmpt |
|- ( x e. ( Base ` k ) |-> if ( x ( le ` k ) w , ( ( ( DIsoB ` k ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` k ) ` w ) ) A. q e. ( Atoms ` k ) ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) ) ) ) |
54 |
3 6 53
|
cmpt |
|- ( w e. ( LHyp ` k ) |-> ( x e. ( Base ` k ) |-> if ( x ( le ` k ) w , ( ( ( DIsoB ` k ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` k ) ` w ) ) A. q e. ( Atoms ` k ) ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) ) ) ) ) |
55 |
1 2 54
|
cmpt |
|- ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( x e. ( Base ` k ) |-> if ( x ( le ` k ) w , ( ( ( DIsoB ` k ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` k ) ` w ) ) A. q e. ( Atoms ` k ) ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) ) ) ) ) ) |
56 |
0 55
|
wceq |
|- DIsoH = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( x e. ( Base ` k ) |-> if ( x ( le ` k ) w , ( ( ( DIsoB ` k ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` k ) ` w ) ) A. q e. ( Atoms ` k ) ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) ) ) ) ) ) |