Step |
Hyp |
Ref |
Expression |
1 |
|
dihval.b |
|- B = ( Base ` K ) |
2 |
|
dihval.l |
|- .<_ = ( le ` K ) |
3 |
|
dihval.j |
|- .\/ = ( join ` K ) |
4 |
|
dihval.m |
|- ./\ = ( meet ` K ) |
5 |
|
dihval.a |
|- A = ( Atoms ` K ) |
6 |
|
dihval.h |
|- H = ( LHyp ` K ) |
7 |
|
elex |
|- ( K e. V -> K e. _V ) |
8 |
|
fveq2 |
|- ( k = K -> ( LHyp ` k ) = ( LHyp ` K ) ) |
9 |
8 6
|
eqtr4di |
|- ( k = K -> ( LHyp ` k ) = H ) |
10 |
|
fveq2 |
|- ( k = K -> ( Base ` k ) = ( Base ` K ) ) |
11 |
10 1
|
eqtr4di |
|- ( k = K -> ( Base ` k ) = B ) |
12 |
|
fveq2 |
|- ( k = K -> ( le ` k ) = ( le ` K ) ) |
13 |
12 2
|
eqtr4di |
|- ( k = K -> ( le ` k ) = .<_ ) |
14 |
13
|
breqd |
|- ( k = K -> ( x ( le ` k ) w <-> x .<_ w ) ) |
15 |
|
fveq2 |
|- ( k = K -> ( DIsoB ` k ) = ( DIsoB ` K ) ) |
16 |
15
|
fveq1d |
|- ( k = K -> ( ( DIsoB ` k ) ` w ) = ( ( DIsoB ` K ) ` w ) ) |
17 |
16
|
fveq1d |
|- ( k = K -> ( ( ( DIsoB ` k ) ` w ) ` x ) = ( ( ( DIsoB ` K ) ` w ) ` x ) ) |
18 |
|
fveq2 |
|- ( k = K -> ( DVecH ` k ) = ( DVecH ` K ) ) |
19 |
18
|
fveq1d |
|- ( k = K -> ( ( DVecH ` k ) ` w ) = ( ( DVecH ` K ) ` w ) ) |
20 |
19
|
fveq2d |
|- ( k = K -> ( LSubSp ` ( ( DVecH ` k ) ` w ) ) = ( LSubSp ` ( ( DVecH ` K ) ` w ) ) ) |
21 |
|
fveq2 |
|- ( k = K -> ( Atoms ` k ) = ( Atoms ` K ) ) |
22 |
21 5
|
eqtr4di |
|- ( k = K -> ( Atoms ` k ) = A ) |
23 |
13
|
breqd |
|- ( k = K -> ( q ( le ` k ) w <-> q .<_ w ) ) |
24 |
23
|
notbid |
|- ( k = K -> ( -. q ( le ` k ) w <-> -. q .<_ w ) ) |
25 |
|
fveq2 |
|- ( k = K -> ( join ` k ) = ( join ` K ) ) |
26 |
25 3
|
eqtr4di |
|- ( k = K -> ( join ` k ) = .\/ ) |
27 |
|
eqidd |
|- ( k = K -> q = q ) |
28 |
|
fveq2 |
|- ( k = K -> ( meet ` k ) = ( meet ` K ) ) |
29 |
28 4
|
eqtr4di |
|- ( k = K -> ( meet ` k ) = ./\ ) |
30 |
29
|
oveqd |
|- ( k = K -> ( x ( meet ` k ) w ) = ( x ./\ w ) ) |
31 |
26 27 30
|
oveq123d |
|- ( k = K -> ( q ( join ` k ) ( x ( meet ` k ) w ) ) = ( q .\/ ( x ./\ w ) ) ) |
32 |
31
|
eqeq1d |
|- ( k = K -> ( ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x <-> ( q .\/ ( x ./\ w ) ) = x ) ) |
33 |
24 32
|
anbi12d |
|- ( k = K -> ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) <-> ( -. q .<_ w /\ ( q .\/ ( x ./\ w ) ) = x ) ) ) |
34 |
19
|
fveq2d |
|- ( k = K -> ( LSSum ` ( ( DVecH ` k ) ` w ) ) = ( LSSum ` ( ( DVecH ` K ) ` w ) ) ) |
35 |
|
fveq2 |
|- ( k = K -> ( DIsoC ` k ) = ( DIsoC ` K ) ) |
36 |
35
|
fveq1d |
|- ( k = K -> ( ( DIsoC ` k ) ` w ) = ( ( DIsoC ` K ) ` w ) ) |
37 |
36
|
fveq1d |
|- ( k = K -> ( ( ( DIsoC ` k ) ` w ) ` q ) = ( ( ( DIsoC ` K ) ` w ) ` q ) ) |
38 |
16 30
|
fveq12d |
|- ( k = K -> ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) = ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) |
39 |
34 37 38
|
oveq123d |
|- ( k = K -> ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) = ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) ) |
40 |
39
|
eqeq2d |
|- ( k = K -> ( u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) <-> u = ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) ) ) |
41 |
33 40
|
imbi12d |
|- ( k = K -> ( ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) <-> ( ( -. q .<_ w /\ ( q .\/ ( x ./\ w ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) ) ) ) |
42 |
22 41
|
raleqbidv |
|- ( k = K -> ( A. q e. ( Atoms ` k ) ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) <-> A. q e. A ( ( -. q .<_ w /\ ( q .\/ ( x ./\ w ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) ) ) ) |
43 |
20 42
|
riotaeqbidv |
|- ( k = K -> ( iota_ u e. ( LSubSp ` ( ( DVecH ` k ) ` w ) ) A. q e. ( Atoms ` k ) ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) ) = ( iota_ u e. ( LSubSp ` ( ( DVecH ` K ) ` w ) ) A. q e. A ( ( -. q .<_ w /\ ( q .\/ ( x ./\ w ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) ) ) ) |
44 |
14 17 43
|
ifbieq12d |
|- ( k = K -> if ( x ( le ` k ) w , ( ( ( DIsoB ` k ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` k ) ` w ) ) A. q e. ( Atoms ` k ) ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) ) ) = if ( x .<_ w , ( ( ( DIsoB ` K ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` K ) ` w ) ) A. q e. A ( ( -. q .<_ w /\ ( q .\/ ( x ./\ w ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) ) ) ) ) |
45 |
11 44
|
mpteq12dv |
|- ( k = K -> ( x e. ( Base ` k ) |-> if ( x ( le ` k ) w , ( ( ( DIsoB ` k ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` k ) ` w ) ) A. q e. ( Atoms ` k ) ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) ) ) ) = ( x e. B |-> if ( x .<_ w , ( ( ( DIsoB ` K ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` K ) ` w ) ) A. q e. A ( ( -. q .<_ w /\ ( q .\/ ( x ./\ w ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) ) ) ) ) ) |
46 |
9 45
|
mpteq12dv |
|- ( k = K -> ( w e. ( LHyp ` k ) |-> ( x e. ( Base ` k ) |-> if ( x ( le ` k ) w , ( ( ( DIsoB ` k ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` k ) ` w ) ) A. q e. ( Atoms ` k ) ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) ) ) ) ) = ( w e. H |-> ( x e. B |-> if ( x .<_ w , ( ( ( DIsoB ` K ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` K ) ` w ) ) A. q e. A ( ( -. q .<_ w /\ ( q .\/ ( x ./\ w ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) ) ) ) ) ) ) |
47 |
|
df-dih |
|- DIsoH = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( x e. ( Base ` k ) |-> if ( x ( le ` k ) w , ( ( ( DIsoB ` k ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` k ) ` w ) ) A. q e. ( Atoms ` k ) ( ( -. q ( le ` k ) w /\ ( q ( join ` k ) ( x ( meet ` k ) w ) ) = x ) -> u = ( ( ( ( DIsoC ` k ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` k ) ` w ) ) ( ( ( DIsoB ` k ) ` w ) ` ( x ( meet ` k ) w ) ) ) ) ) ) ) ) ) |
48 |
46 47 6
|
mptfvmpt |
|- ( K e. _V -> ( DIsoH ` K ) = ( w e. H |-> ( x e. B |-> if ( x .<_ w , ( ( ( DIsoB ` K ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` K ) ` w ) ) A. q e. A ( ( -. q .<_ w /\ ( q .\/ ( x ./\ w ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) ) ) ) ) ) ) |
49 |
7 48
|
syl |
|- ( K e. V -> ( DIsoH ` K ) = ( w e. H |-> ( x e. B |-> if ( x .<_ w , ( ( ( DIsoB ` K ) ` w ) ` x ) , ( iota_ u e. ( LSubSp ` ( ( DVecH ` K ) ` w ) ) A. q e. A ( ( -. q .<_ w /\ ( q .\/ ( x ./\ w ) ) = x ) -> u = ( ( ( ( DIsoC ` K ) ` w ) ` q ) ( LSSum ` ( ( DVecH ` K ) ` w ) ) ( ( ( DIsoB ` K ) ` w ) ` ( x ./\ w ) ) ) ) ) ) ) ) ) |