Metamath Proof Explorer


Theorem dihval

Description: Value of isomorphism H for a lattice K . Definition of isomorphism map in Crawley p. 122 line 3. (Contributed by NM, 3-Feb-2014)

Ref Expression
Hypotheses dihval.b B = Base K
dihval.l ˙ = K
dihval.j ˙ = join K
dihval.m ˙ = meet K
dihval.a A = Atoms K
dihval.h H = LHyp K
dihval.i I = DIsoH K W
dihval.d D = DIsoB K W
dihval.c C = DIsoC K W
dihval.u U = DVecH K W
dihval.s S = LSubSp U
dihval.p ˙ = LSSum U
Assertion dihval K V W H X B I X = if X ˙ W D X ι u S | q A ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W

Proof

Step Hyp Ref Expression
1 dihval.b B = Base K
2 dihval.l ˙ = K
3 dihval.j ˙ = join K
4 dihval.m ˙ = meet K
5 dihval.a A = Atoms K
6 dihval.h H = LHyp K
7 dihval.i I = DIsoH K W
8 dihval.d D = DIsoB K W
9 dihval.c C = DIsoC K W
10 dihval.u U = DVecH K W
11 dihval.s S = LSubSp U
12 dihval.p ˙ = LSSum U
13 1 2 3 4 5 6 7 8 9 10 11 12 dihfval K V W H I = x B if x ˙ W D x ι u S | q A ¬ q ˙ W q ˙ x ˙ W = x u = C q ˙ D x ˙ W
14 13 fveq1d K V W H I X = x B if x ˙ W D x ι u S | q A ¬ q ˙ W q ˙ x ˙ W = x u = C q ˙ D x ˙ W X
15 breq1 x = X x ˙ W X ˙ W
16 fveq2 x = X D x = D X
17 oveq1 x = X x ˙ W = X ˙ W
18 17 oveq2d x = X q ˙ x ˙ W = q ˙ X ˙ W
19 id x = X x = X
20 18 19 eqeq12d x = X q ˙ x ˙ W = x q ˙ X ˙ W = X
21 20 anbi2d x = X ¬ q ˙ W q ˙ x ˙ W = x ¬ q ˙ W q ˙ X ˙ W = X
22 fvoveq1 x = X D x ˙ W = D X ˙ W
23 22 oveq2d x = X C q ˙ D x ˙ W = C q ˙ D X ˙ W
24 23 eqeq2d x = X u = C q ˙ D x ˙ W u = C q ˙ D X ˙ W
25 21 24 imbi12d x = X ¬ q ˙ W q ˙ x ˙ W = x u = C q ˙ D x ˙ W ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W
26 25 ralbidv x = X q A ¬ q ˙ W q ˙ x ˙ W = x u = C q ˙ D x ˙ W q A ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W
27 26 riotabidv x = X ι u S | q A ¬ q ˙ W q ˙ x ˙ W = x u = C q ˙ D x ˙ W = ι u S | q A ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W
28 15 16 27 ifbieq12d x = X if x ˙ W D x ι u S | q A ¬ q ˙ W q ˙ x ˙ W = x u = C q ˙ D x ˙ W = if X ˙ W D X ι u S | q A ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W
29 eqid x B if x ˙ W D x ι u S | q A ¬ q ˙ W q ˙ x ˙ W = x u = C q ˙ D x ˙ W = x B if x ˙ W D x ι u S | q A ¬ q ˙ W q ˙ x ˙ W = x u = C q ˙ D x ˙ W
30 fvex D X V
31 riotaex ι u S | q A ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W V
32 30 31 ifex if X ˙ W D X ι u S | q A ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W V
33 28 29 32 fvmpt X B x B if x ˙ W D x ι u S | q A ¬ q ˙ W q ˙ x ˙ W = x u = C q ˙ D x ˙ W X = if X ˙ W D X ι u S | q A ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W
34 14 33 sylan9eq K V W H X B I X = if X ˙ W D X ι u S | q A ¬ q ˙ W q ˙ X ˙ W = X u = C q ˙ D X ˙ W