Step |
Hyp |
Ref |
Expression |
1 |
|
dihval.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihval.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dihval.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
dihval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
dihval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
dihval.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihval.d |
⊢ 𝐷 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
dihval.c |
⊢ 𝐶 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
dihval.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
dihval.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
12 |
|
dihval.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dihvalc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) = ( ℩ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) ) |
14 |
|
simp1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
15 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → 𝑞 ∈ 𝐴 ) |
16 |
|
simp3ll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ¬ 𝑞 ≤ 𝑊 ) |
17 |
15 16
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) |
18 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → 𝑟 ∈ 𝐴 ) |
19 |
|
simp3rl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ¬ 𝑟 ≤ 𝑊 ) |
20 |
18 19
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ) |
21 |
|
simp1rl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → 𝑋 ∈ 𝐵 ) |
22 |
|
simp3lr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) |
23 |
|
simp3rr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( 𝑟 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) |
24 |
22 23
|
eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑟 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
25 |
1 2 3 4 5 6 8 9 10 12
|
dihjust |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ ( 𝑟 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑊 ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑟 ∨ ( 𝑋 ∧ 𝑊 ) ) ) → ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) = ( ( 𝐶 ‘ 𝑟 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) |
26 |
14 17 20 21 24 25
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) = ( ( 𝐶 ‘ 𝑟 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) |
27 |
26
|
3exp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) → ( ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) = ( ( 𝐶 ‘ 𝑟 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) ) |
28 |
27
|
ralrimivv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ∀ 𝑞 ∈ 𝐴 ∀ 𝑟 ∈ 𝐴 ( ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) = ( ( 𝐶 ‘ 𝑟 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
29 |
1 2 3 4 5 6
|
lhpmcvr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |
30 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
31 |
6 10 30
|
dvhlmod |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) → 𝑈 ∈ LMod ) |
32 |
2 5 6 10 9 11
|
diclss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) → ( 𝐶 ‘ 𝑞 ) ∈ 𝑆 ) |
33 |
32
|
adantlr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) → ( 𝐶 ‘ 𝑞 ) ∈ 𝑆 ) |
34 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
35 |
34
|
ad3antrrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
36 |
|
simplrl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) → 𝑋 ∈ 𝐵 ) |
37 |
1 6
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
38 |
37
|
ad3antlr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐵 ) |
39 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
40 |
35 36 38 39
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
41 |
1 2 4
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) |
42 |
35 36 38 41
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) |
43 |
1 2 6 10 8 11
|
diblss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) ) → ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ∈ 𝑆 ) |
44 |
30 40 42 43
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) → ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ∈ 𝑆 ) |
45 |
11 12
|
lsmcl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝐶 ‘ 𝑞 ) ∈ 𝑆 ∧ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ∈ 𝑆 ) → ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ∈ 𝑆 ) |
46 |
31 33 44 45
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) → ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ∈ 𝑆 ) |
47 |
46
|
a1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) → ( ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 → ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ∈ 𝑆 ) ) |
48 |
47
|
expr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ 𝑞 ∈ 𝐴 ) → ( ¬ 𝑞 ≤ 𝑊 → ( ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 → ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ∈ 𝑆 ) ) ) |
49 |
48
|
impd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ 𝑞 ∈ 𝐴 ) → ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ∈ 𝑆 ) ) |
50 |
49
|
ancld |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ 𝑞 ∈ 𝐴 ) → ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ∈ 𝑆 ) ) ) |
51 |
50
|
reximdva |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ∃ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ∈ 𝑆 ) ) ) |
52 |
29 51
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ∃ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ∈ 𝑆 ) ) |
53 |
|
breq1 |
⊢ ( 𝑞 = 𝑟 → ( 𝑞 ≤ 𝑊 ↔ 𝑟 ≤ 𝑊 ) ) |
54 |
53
|
notbid |
⊢ ( 𝑞 = 𝑟 → ( ¬ 𝑞 ≤ 𝑊 ↔ ¬ 𝑟 ≤ 𝑊 ) ) |
55 |
|
oveq1 |
⊢ ( 𝑞 = 𝑟 → ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑟 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
56 |
55
|
eqeq1d |
⊢ ( 𝑞 = 𝑟 → ( ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ↔ ( 𝑟 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |
57 |
54 56
|
anbi12d |
⊢ ( 𝑞 = 𝑟 → ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ↔ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) |
58 |
|
fveq2 |
⊢ ( 𝑞 = 𝑟 → ( 𝐶 ‘ 𝑞 ) = ( 𝐶 ‘ 𝑟 ) ) |
59 |
58
|
oveq1d |
⊢ ( 𝑞 = 𝑟 → ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) = ( ( 𝐶 ‘ 𝑟 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) |
60 |
57 59
|
reusv3 |
⊢ ( ∃ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ∈ 𝑆 ) → ( ∀ 𝑞 ∈ 𝐴 ∀ 𝑟 ∈ 𝐴 ( ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) = ( ( 𝐶 ‘ 𝑟 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ↔ ∃ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) ) |
61 |
52 60
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( ∀ 𝑞 ∈ 𝐴 ∀ 𝑟 ∈ 𝐴 ( ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑟 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) = ( ( 𝐶 ‘ 𝑟 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ↔ ∃ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) ) |
62 |
28 61
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ∃ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
63 |
|
reusv1 |
⊢ ( ∃ 𝑞 ∈ 𝐴 ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ( ∃! 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ↔ ∃ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) ) |
64 |
29 63
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( ∃! 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ↔ ∃ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) ) |
65 |
62 64
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ∃! 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
66 |
|
riotacl |
⊢ ( ∃! 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) → ( ℩ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) ∈ 𝑆 ) |
67 |
65 66
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( ℩ 𝑢 ∈ 𝑆 ∀ 𝑞 ∈ 𝐴 ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( 𝐶 ‘ 𝑞 ) ⊕ ( 𝐷 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) ) ∈ 𝑆 ) |
68 |
13 67
|
eqeltrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝑆 ) |