Metamath Proof Explorer


Theorem dihvalcq

Description: Value of isomorphism H for a lattice K when -. X .<_ W , given auxiliary atom Q . TODO: Use dihvalcq2 (with lhpmcvr3 for ( Q .\/ ( X ./\ W ) ) = X simplification) that changes C and D to I and make this obsolete. Do to other theorems as well. (Contributed by NM, 6-Mar-2014)

Ref Expression
Hypotheses dihvalcq.b B = Base K
dihvalcq.l ˙ = K
dihvalcq.j ˙ = join K
dihvalcq.m ˙ = meet K
dihvalcq.a A = Atoms K
dihvalcq.h H = LHyp K
dihvalcq.i I = DIsoH K W
dihvalcq.d D = DIsoB K W
dihvalcq.c C = DIsoC K W
dihvalcq.u U = DVecH K W
dihvalcq.p ˙ = LSSum U
Assertion dihvalcq K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X I X = C Q ˙ D X ˙ W

Proof

Step Hyp Ref Expression
1 dihvalcq.b B = Base K
2 dihvalcq.l ˙ = K
3 dihvalcq.j ˙ = join K
4 dihvalcq.m ˙ = meet K
5 dihvalcq.a A = Atoms K
6 dihvalcq.h H = LHyp K
7 dihvalcq.i I = DIsoH K W
8 dihvalcq.d D = DIsoB K W
9 dihvalcq.c C = DIsoC K W
10 dihvalcq.u U = DVecH K W
11 dihvalcq.p ˙ = LSSum U
12 eqid LSubSp U = LSubSp U
13 1 2 3 4 5 6 7 8 9 10 12 11 dihvalcqpre K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X I X = C Q ˙ D X ˙ W