Metamath Proof Explorer


Theorem dihvalcq

Description: Value of isomorphism H for a lattice K when -. X .<_ W , given auxiliary atom Q . TODO: Use dihvalcq2 (with lhpmcvr3 for ( Q .\/ ( X ./\ W ) ) = X simplification) that changes C and D to I and make this obsolete. Do to other theorems as well. (Contributed by NM, 6-Mar-2014)

Ref Expression
Hypotheses dihvalcq.b B=BaseK
dihvalcq.l ˙=K
dihvalcq.j ˙=joinK
dihvalcq.m ˙=meetK
dihvalcq.a A=AtomsK
dihvalcq.h H=LHypK
dihvalcq.i I=DIsoHKW
dihvalcq.d D=DIsoBKW
dihvalcq.c C=DIsoCKW
dihvalcq.u U=DVecHKW
dihvalcq.p ˙=LSSumU
Assertion dihvalcq KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XIX=CQ˙DX˙W

Proof

Step Hyp Ref Expression
1 dihvalcq.b B=BaseK
2 dihvalcq.l ˙=K
3 dihvalcq.j ˙=joinK
4 dihvalcq.m ˙=meetK
5 dihvalcq.a A=AtomsK
6 dihvalcq.h H=LHypK
7 dihvalcq.i I=DIsoHKW
8 dihvalcq.d D=DIsoBKW
9 dihvalcq.c C=DIsoCKW
10 dihvalcq.u U=DVecHKW
11 dihvalcq.p ˙=LSSumU
12 eqid LSubSpU=LSubSpU
13 1 2 3 4 5 6 7 8 9 10 12 11 dihvalcqpre KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XIX=CQ˙DX˙W