Metamath Proof Explorer


Theorem dihvalb

Description: Value of isomorphism H for a lattice K when X .<_ W . (Contributed by NM, 4-Mar-2014)

Ref Expression
Hypotheses dihvalb.b B=BaseK
dihvalb.l ˙=K
dihvalb.h H=LHypK
dihvalb.i I=DIsoHKW
dihvalb.d D=DIsoBKW
Assertion dihvalb KVWHXBX˙WIX=DX

Proof

Step Hyp Ref Expression
1 dihvalb.b B=BaseK
2 dihvalb.l ˙=K
3 dihvalb.h H=LHypK
4 dihvalb.i I=DIsoHKW
5 dihvalb.d D=DIsoBKW
6 eqid joinK=joinK
7 eqid meetK=meetK
8 eqid AtomsK=AtomsK
9 eqid DIsoCKW=DIsoCKW
10 eqid DVecHKW=DVecHKW
11 eqid LSubSpDVecHKW=LSubSpDVecHKW
12 eqid LSSumDVecHKW=LSSumDVecHKW
13 1 2 6 7 8 3 4 5 9 10 11 12 dihval KVWHXBIX=ifX˙WDXιuLSubSpDVecHKW|qAtomsK¬q˙WqjoinKXmeetKW=Xu=DIsoCKWqLSSumDVecHKWDXmeetKW
14 iftrue X˙WifX˙WDXιuLSubSpDVecHKW|qAtomsK¬q˙WqjoinKXmeetKW=Xu=DIsoCKWqLSSumDVecHKWDXmeetKW=DX
15 13 14 sylan9eq KVWHXBX˙WIX=DX
16 15 anasss KVWHXBX˙WIX=DX