Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
dihvalb
Next ⟩
dihopelvalbN
Metamath Proof Explorer
Ascii
Unicode
Theorem
dihvalb
Description:
Value of isomorphism H for a lattice
K
when
X .<_ W
.
(Contributed by
NM
, 4-Mar-2014)
Ref
Expression
Hypotheses
dihvalb.b
⊢
B
=
Base
K
dihvalb.l
⊢
≤
˙
=
≤
K
dihvalb.h
⊢
H
=
LHyp
⁡
K
dihvalb.i
⊢
I
=
DIsoH
⁡
K
⁡
W
dihvalb.d
⊢
D
=
DIsoB
⁡
K
⁡
W
Assertion
dihvalb
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
I
⁡
X
=
D
⁡
X
Proof
Step
Hyp
Ref
Expression
1
dihvalb.b
⊢
B
=
Base
K
2
dihvalb.l
⊢
≤
˙
=
≤
K
3
dihvalb.h
⊢
H
=
LHyp
⁡
K
4
dihvalb.i
⊢
I
=
DIsoH
⁡
K
⁡
W
5
dihvalb.d
⊢
D
=
DIsoB
⁡
K
⁡
W
6
eqid
⊢
join
⁡
K
=
join
⁡
K
7
eqid
⊢
meet
⁡
K
=
meet
⁡
K
8
eqid
⊢
Atoms
⁡
K
=
Atoms
⁡
K
9
eqid
⊢
DIsoC
⁡
K
⁡
W
=
DIsoC
⁡
K
⁡
W
10
eqid
⊢
DVecH
⁡
K
⁡
W
=
DVecH
⁡
K
⁡
W
11
eqid
⊢
LSubSp
⁡
DVecH
⁡
K
⁡
W
=
LSubSp
⁡
DVecH
⁡
K
⁡
W
12
eqid
⊢
LSSum
⁡
DVecH
⁡
K
⁡
W
=
LSSum
⁡
DVecH
⁡
K
⁡
W
13
1
2
6
7
8
3
4
5
9
10
11
12
dihval
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
B
→
I
⁡
X
=
if
X
≤
˙
W
D
⁡
X
ι
u
∈
LSubSp
⁡
DVecH
⁡
K
⁡
W
|
∀
q
∈
Atoms
⁡
K
¬
q
≤
˙
W
∧
q
join
⁡
K
X
meet
⁡
K
W
=
X
→
u
=
DIsoC
⁡
K
⁡
W
⁡
q
LSSum
⁡
DVecH
⁡
K
⁡
W
D
⁡
X
meet
⁡
K
W
14
iftrue
⊢
X
≤
˙
W
→
if
X
≤
˙
W
D
⁡
X
ι
u
∈
LSubSp
⁡
DVecH
⁡
K
⁡
W
|
∀
q
∈
Atoms
⁡
K
¬
q
≤
˙
W
∧
q
join
⁡
K
X
meet
⁡
K
W
=
X
→
u
=
DIsoC
⁡
K
⁡
W
⁡
q
LSSum
⁡
DVecH
⁡
K
⁡
W
D
⁡
X
meet
⁡
K
W
=
D
⁡
X
15
13
14
sylan9eq
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
I
⁡
X
=
D
⁡
X
16
15
anasss
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
I
⁡
X
=
D
⁡
X