Metamath Proof Explorer


Theorem dihvalb

Description: Value of isomorphism H for a lattice K when X .<_ W . (Contributed by NM, 4-Mar-2014)

Ref Expression
Hypotheses dihvalb.b B = Base K
dihvalb.l ˙ = K
dihvalb.h H = LHyp K
dihvalb.i I = DIsoH K W
dihvalb.d D = DIsoB K W
Assertion dihvalb K V W H X B X ˙ W I X = D X

Proof

Step Hyp Ref Expression
1 dihvalb.b B = Base K
2 dihvalb.l ˙ = K
3 dihvalb.h H = LHyp K
4 dihvalb.i I = DIsoH K W
5 dihvalb.d D = DIsoB K W
6 eqid join K = join K
7 eqid meet K = meet K
8 eqid Atoms K = Atoms K
9 eqid DIsoC K W = DIsoC K W
10 eqid DVecH K W = DVecH K W
11 eqid LSubSp DVecH K W = LSubSp DVecH K W
12 eqid LSSum DVecH K W = LSSum DVecH K W
13 1 2 6 7 8 3 4 5 9 10 11 12 dihval K V W H X B I X = if X ˙ W D X ι u LSubSp DVecH K W | q Atoms K ¬ q ˙ W q join K X meet K W = X u = DIsoC K W q LSSum DVecH K W D X meet K W
14 iftrue X ˙ W if X ˙ W D X ι u LSubSp DVecH K W | q Atoms K ¬ q ˙ W q join K X meet K W = X u = DIsoC K W q LSSum DVecH K W D X meet K W = D X
15 13 14 sylan9eq K V W H X B X ˙ W I X = D X
16 15 anasss K V W H X B X ˙ W I X = D X