Step |
Hyp |
Ref |
Expression |
1 |
|
dihvalb.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihvalb.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihvalb.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dihvalb.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dihvalb.d |
⊢ 𝐷 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
7 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
8 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
9 |
|
eqid |
⊢ ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
12 |
|
eqid |
⊢ ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
13 |
1 2 6 7 8 3 4 5 9 10 11 12
|
dihval |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) = if ( 𝑋 ≤ 𝑊 , ( 𝐷 ‘ 𝑋 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝐷 ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) ) ) |
14 |
|
iftrue |
⊢ ( 𝑋 ≤ 𝑊 → if ( 𝑋 ≤ 𝑊 , ( 𝐷 ‘ 𝑋 ) , ( ℩ 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ( ( ¬ 𝑞 ≤ 𝑊 ∧ ( 𝑞 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝐷 ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) ) = ( 𝐷 ‘ 𝑋 ) ) |
15 |
13 14
|
sylan9eq |
⊢ ( ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑊 ) → ( 𝐼 ‘ 𝑋 ) = ( 𝐷 ‘ 𝑋 ) ) |
16 |
15
|
anasss |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) = ( 𝐷 ‘ 𝑋 ) ) |