Metamath Proof Explorer


Theorem dihvalb

Description: Value of isomorphism H for a lattice K when X .<_ W . (Contributed by NM, 4-Mar-2014)

Ref Expression
Hypotheses dihvalb.b 𝐵 = ( Base ‘ 𝐾 )
dihvalb.l = ( le ‘ 𝐾 )
dihvalb.h 𝐻 = ( LHyp ‘ 𝐾 )
dihvalb.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihvalb.d 𝐷 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
Assertion dihvalb ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) = ( 𝐷𝑋 ) )

Proof

Step Hyp Ref Expression
1 dihvalb.b 𝐵 = ( Base ‘ 𝐾 )
2 dihvalb.l = ( le ‘ 𝐾 )
3 dihvalb.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dihvalb.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
5 dihvalb.d 𝐷 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
6 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
7 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
8 eqid ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 )
9 eqid ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
10 eqid ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
11 eqid ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
12 eqid ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
13 1 2 6 7 8 3 4 5 9 10 11 12 dihval ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑋𝐵 ) → ( 𝐼𝑋 ) = if ( 𝑋 𝑊 , ( 𝐷𝑋 ) , ( 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝐷 ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) ) )
14 iftrue ( 𝑋 𝑊 → if ( 𝑋 𝑊 , ( 𝐷𝑋 ) , ( 𝑢 ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∀ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ( ( ¬ 𝑞 𝑊 ∧ ( 𝑞 ( join ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑋 ) → 𝑢 = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑞 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝐷 ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) ) = ( 𝐷𝑋 ) )
15 13 14 sylan9eq ( ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑋𝐵 ) ∧ 𝑋 𝑊 ) → ( 𝐼𝑋 ) = ( 𝐷𝑋 ) )
16 15 anasss ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) = ( 𝐷𝑋 ) )