Metamath Proof Explorer


Theorem dihopelvalbN

Description: Ordered pair member of the partial isomorphism H for argument under W . (Contributed by NM, 21-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihval3.b B = Base K
dihval3.l ˙ = K
dihval3.h H = LHyp K
dihval3.t T = LTrn K W
dihval3.r R = trL K W
dihval3.o O = g T I B
dihval3.i I = DIsoH K W
Assertion dihopelvalbN K V W H X B X ˙ W F S I X F T R F ˙ X S = O

Proof

Step Hyp Ref Expression
1 dihval3.b B = Base K
2 dihval3.l ˙ = K
3 dihval3.h H = LHyp K
4 dihval3.t T = LTrn K W
5 dihval3.r R = trL K W
6 dihval3.o O = g T I B
7 dihval3.i I = DIsoH K W
8 eqid DIsoB K W = DIsoB K W
9 1 2 3 7 8 dihvalb K V W H X B X ˙ W I X = DIsoB K W X
10 9 eleq2d K V W H X B X ˙ W F S I X F S DIsoB K W X
11 1 2 3 4 5 6 8 dibopelval3 K V W H X B X ˙ W F S DIsoB K W X F T R F ˙ X S = O
12 10 11 bitrd K V W H X B X ˙ W F S I X F T R F ˙ X S = O