| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihval3.b |
|- B = ( Base ` K ) |
| 2 |
|
dihval3.l |
|- .<_ = ( le ` K ) |
| 3 |
|
dihval3.h |
|- H = ( LHyp ` K ) |
| 4 |
|
dihval3.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 5 |
|
dihval3.r |
|- R = ( ( trL ` K ) ` W ) |
| 6 |
|
dihval3.o |
|- O = ( g e. T |-> ( _I |` B ) ) |
| 7 |
|
dihval3.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 8 |
|
eqid |
|- ( ( DIsoB ` K ) ` W ) = ( ( DIsoB ` K ) ` W ) |
| 9 |
1 2 3 7 8
|
dihvalb |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) = ( ( ( DIsoB ` K ) ` W ) ` X ) ) |
| 10 |
9
|
eleq2d |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( <. F , S >. e. ( I ` X ) <-> <. F , S >. e. ( ( ( DIsoB ` K ) ` W ) ` X ) ) ) |
| 11 |
1 2 3 4 5 6 8
|
dibopelval3 |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( <. F , S >. e. ( ( ( DIsoB ` K ) ` W ) ` X ) <-> ( ( F e. T /\ ( R ` F ) .<_ X ) /\ S = O ) ) ) |
| 12 |
10 11
|
bitrd |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( <. F , S >. e. ( I ` X ) <-> ( ( F e. T /\ ( R ` F ) .<_ X ) /\ S = O ) ) ) |