Step |
Hyp |
Ref |
Expression |
1 |
|
dihvalcqat.l |
|
2 |
|
dihvalcqat.a |
|
3 |
|
dihvalcqat.h |
|
4 |
|
dihvalcqat.j |
|
5 |
|
dihvalcqat.i |
|
6 |
|
simpl |
|
7 |
|
eqid |
|
8 |
7 2
|
atbase |
|
9 |
8
|
ad2antrl |
|
10 |
|
simprr |
|
11 |
|
simpr |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
1 12 13 2 3
|
lhpmat |
|
15 |
14
|
oveq2d |
|
16 |
|
hlol |
|
17 |
16
|
ad2antrr |
|
18 |
|
eqid |
|
19 |
7 18 13
|
olj01 |
|
20 |
17 9 19
|
syl2anc |
|
21 |
15 20
|
eqtrd |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
7 1 18 12 2 3 5 22 4 23 24
|
dihvalcq |
|
26 |
6 9 10 11 21 25
|
syl122anc |
|
27 |
14
|
fveq2d |
|
28 |
|
eqid |
|
29 |
13 3 22 23 28
|
dib0 |
|
30 |
29
|
adantr |
|
31 |
27 30
|
eqtrd |
|
32 |
31
|
oveq2d |
|
33 |
3 23 6
|
dvhlmod |
|
34 |
|
eqid |
|
35 |
1 2 3 23 4 34
|
diclss |
|
36 |
34
|
lsssubg |
|
37 |
33 35 36
|
syl2anc |
|
38 |
28 24
|
lsm01 |
|
39 |
37 38
|
syl |
|
40 |
32 39
|
eqtrd |
|
41 |
26 40
|
eqtrd |
|