Metamath Proof Explorer


Theorem dihvalcqat

Description: Value of isomorphism H for a lattice K at an atom not under W . (Contributed by NM, 27-Mar-2014)

Ref Expression
Hypotheses dihvalcqat.l ˙ = K
dihvalcqat.a A = Atoms K
dihvalcqat.h H = LHyp K
dihvalcqat.j J = DIsoC K W
dihvalcqat.i I = DIsoH K W
Assertion dihvalcqat K HL W H Q A ¬ Q ˙ W I Q = J Q

Proof

Step Hyp Ref Expression
1 dihvalcqat.l ˙ = K
2 dihvalcqat.a A = Atoms K
3 dihvalcqat.h H = LHyp K
4 dihvalcqat.j J = DIsoC K W
5 dihvalcqat.i I = DIsoH K W
6 simpl K HL W H Q A ¬ Q ˙ W K HL W H
7 eqid Base K = Base K
8 7 2 atbase Q A Q Base K
9 8 ad2antrl K HL W H Q A ¬ Q ˙ W Q Base K
10 simprr K HL W H Q A ¬ Q ˙ W ¬ Q ˙ W
11 simpr K HL W H Q A ¬ Q ˙ W Q A ¬ Q ˙ W
12 eqid meet K = meet K
13 eqid 0. K = 0. K
14 1 12 13 2 3 lhpmat K HL W H Q A ¬ Q ˙ W Q meet K W = 0. K
15 14 oveq2d K HL W H Q A ¬ Q ˙ W Q join K Q meet K W = Q join K 0. K
16 hlol K HL K OL
17 16 ad2antrr K HL W H Q A ¬ Q ˙ W K OL
18 eqid join K = join K
19 7 18 13 olj01 K OL Q Base K Q join K 0. K = Q
20 17 9 19 syl2anc K HL W H Q A ¬ Q ˙ W Q join K 0. K = Q
21 15 20 eqtrd K HL W H Q A ¬ Q ˙ W Q join K Q meet K W = Q
22 eqid DIsoB K W = DIsoB K W
23 eqid DVecH K W = DVecH K W
24 eqid LSSum DVecH K W = LSSum DVecH K W
25 7 1 18 12 2 3 5 22 4 23 24 dihvalcq K HL W H Q Base K ¬ Q ˙ W Q A ¬ Q ˙ W Q join K Q meet K W = Q I Q = J Q LSSum DVecH K W DIsoB K W Q meet K W
26 6 9 10 11 21 25 syl122anc K HL W H Q A ¬ Q ˙ W I Q = J Q LSSum DVecH K W DIsoB K W Q meet K W
27 14 fveq2d K HL W H Q A ¬ Q ˙ W DIsoB K W Q meet K W = DIsoB K W 0. K
28 eqid 0 DVecH K W = 0 DVecH K W
29 13 3 22 23 28 dib0 K HL W H DIsoB K W 0. K = 0 DVecH K W
30 29 adantr K HL W H Q A ¬ Q ˙ W DIsoB K W 0. K = 0 DVecH K W
31 27 30 eqtrd K HL W H Q A ¬ Q ˙ W DIsoB K W Q meet K W = 0 DVecH K W
32 31 oveq2d K HL W H Q A ¬ Q ˙ W J Q LSSum DVecH K W DIsoB K W Q meet K W = J Q LSSum DVecH K W 0 DVecH K W
33 3 23 6 dvhlmod K HL W H Q A ¬ Q ˙ W DVecH K W LMod
34 eqid LSubSp DVecH K W = LSubSp DVecH K W
35 1 2 3 23 4 34 diclss K HL W H Q A ¬ Q ˙ W J Q LSubSp DVecH K W
36 34 lsssubg DVecH K W LMod J Q LSubSp DVecH K W J Q SubGrp DVecH K W
37 33 35 36 syl2anc K HL W H Q A ¬ Q ˙ W J Q SubGrp DVecH K W
38 28 24 lsm01 J Q SubGrp DVecH K W J Q LSSum DVecH K W 0 DVecH K W = J Q
39 37 38 syl K HL W H Q A ¬ Q ˙ W J Q LSSum DVecH K W 0 DVecH K W = J Q
40 32 39 eqtrd K HL W H Q A ¬ Q ˙ W J Q LSSum DVecH K W DIsoB K W Q meet K W = J Q
41 26 40 eqtrd K HL W H Q A ¬ Q ˙ W I Q = J Q