Step |
Hyp |
Ref |
Expression |
1 |
|
dihvalcqat.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
dihvalcqat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
dihvalcqat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dihvalcqat.j |
⊢ 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dihvalcqat.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
8 |
7 2
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
9 |
8
|
ad2antrl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
10 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ¬ 𝑄 ≤ 𝑊 ) |
11 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
12 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
13 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
14 |
1 12 13 2 3
|
lhpmat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑄 ( meet ‘ 𝐾 ) 𝑊 ) = ( 0. ‘ 𝐾 ) ) |
15 |
14
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑄 ( join ‘ 𝐾 ) ( 𝑄 ( meet ‘ 𝐾 ) 𝑊 ) ) = ( 𝑄 ( join ‘ 𝐾 ) ( 0. ‘ 𝐾 ) ) ) |
16 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
17 |
16
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝐾 ∈ OL ) |
18 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
19 |
7 18 13
|
olj01 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ( join ‘ 𝐾 ) ( 0. ‘ 𝐾 ) ) = 𝑄 ) |
20 |
17 9 19
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑄 ( join ‘ 𝐾 ) ( 0. ‘ 𝐾 ) ) = 𝑄 ) |
21 |
15 20
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑄 ( join ‘ 𝐾 ) ( 𝑄 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑄 ) |
22 |
|
eqid |
⊢ ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
23 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
24 |
|
eqid |
⊢ ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
25 |
7 1 18 12 2 3 5 22 4 23 24
|
dihvalcq |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ( join ‘ 𝐾 ) ( 𝑄 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑄 ) ) → ( 𝐼 ‘ 𝑄 ) = ( ( 𝐽 ‘ 𝑄 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑄 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) |
26 |
6 9 10 11 21 25
|
syl122anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑄 ) = ( ( 𝐽 ‘ 𝑄 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑄 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) |
27 |
14
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑄 ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 0. ‘ 𝐾 ) ) ) |
28 |
|
eqid |
⊢ ( 0g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 0g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
29 |
13 3 22 23 28
|
dib0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 0. ‘ 𝐾 ) ) = { ( 0g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) } ) |
30 |
29
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 0. ‘ 𝐾 ) ) = { ( 0g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) } ) |
31 |
27 30
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑄 ( meet ‘ 𝐾 ) 𝑊 ) ) = { ( 0g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) } ) |
32 |
31
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 𝐽 ‘ 𝑄 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑄 ( meet ‘ 𝐾 ) 𝑊 ) ) ) = ( ( 𝐽 ‘ 𝑄 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) { ( 0g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) } ) ) |
33 |
3 23 6
|
dvhlmod |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod ) |
34 |
|
eqid |
⊢ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
35 |
1 2 3 23 4 34
|
diclss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐽 ‘ 𝑄 ) ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
36 |
34
|
lsssubg |
⊢ ( ( ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod ∧ ( 𝐽 ‘ 𝑄 ) ∈ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝐽 ‘ 𝑄 ) ∈ ( SubGrp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
37 |
33 35 36
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐽 ‘ 𝑄 ) ∈ ( SubGrp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
38 |
28 24
|
lsm01 |
⊢ ( ( 𝐽 ‘ 𝑄 ) ∈ ( SubGrp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( 𝐽 ‘ 𝑄 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) { ( 0g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) } ) = ( 𝐽 ‘ 𝑄 ) ) |
39 |
37 38
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 𝐽 ‘ 𝑄 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) { ( 0g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) } ) = ( 𝐽 ‘ 𝑄 ) ) |
40 |
32 39
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 𝐽 ‘ 𝑄 ) ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑄 ( meet ‘ 𝐾 ) 𝑊 ) ) ) = ( 𝐽 ‘ 𝑄 ) ) |
41 |
26 40
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑄 ) = ( 𝐽 ‘ 𝑄 ) ) |