Step |
Hyp |
Ref |
Expression |
1 |
|
dih1dimb.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dih1dimb.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dih1dimb.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dih1dimb.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dih1dimb.o |
⊢ 𝑂 = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
6 |
|
dih1dimb.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
dih1dimb.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dih1dimb.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
9 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
1 2 3 4
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ∈ 𝐵 ) |
11 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
12 |
11 2 3 4
|
trlle |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) ( le ‘ 𝐾 ) 𝑊 ) |
13 |
|
eqid |
⊢ ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
14 |
1 11 2 7 13
|
dihvalb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑅 ‘ 𝐹 ) ∈ 𝐵 ∧ ( 𝑅 ‘ 𝐹 ) ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐼 ‘ ( 𝑅 ‘ 𝐹 ) ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑅 ‘ 𝐹 ) ) ) |
15 |
9 10 12 14
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝐼 ‘ ( 𝑅 ‘ 𝐹 ) ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑅 ‘ 𝐹 ) ) ) |
16 |
1 2 3 4 5 6 13 8
|
dib1dim2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑅 ‘ 𝐹 ) ) = ( 𝑁 ‘ { 〈 𝐹 , 𝑂 〉 } ) ) |
17 |
15 16
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝐼 ‘ ( 𝑅 ‘ 𝐹 ) ) = ( 𝑁 ‘ { 〈 𝐹 , 𝑂 〉 } ) ) |