| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dih1dimb.b |
|- B = ( Base ` K ) |
| 2 |
|
dih1dimb.h |
|- H = ( LHyp ` K ) |
| 3 |
|
dih1dimb.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 4 |
|
dih1dimb.r |
|- R = ( ( trL ` K ) ` W ) |
| 5 |
|
dih1dimb.o |
|- O = ( h e. T |-> ( _I |` B ) ) |
| 6 |
|
dih1dimb.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 7 |
|
dih1dimb.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 8 |
|
dih1dimb.n |
|- N = ( LSpan ` U ) |
| 9 |
|
simpl |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( K e. HL /\ W e. H ) ) |
| 10 |
1 2 3 4
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` F ) e. B ) |
| 11 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 12 |
11 2 3 4
|
trlle |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` F ) ( le ` K ) W ) |
| 13 |
|
eqid |
|- ( ( DIsoB ` K ) ` W ) = ( ( DIsoB ` K ) ` W ) |
| 14 |
1 11 2 7 13
|
dihvalb |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R ` F ) e. B /\ ( R ` F ) ( le ` K ) W ) ) -> ( I ` ( R ` F ) ) = ( ( ( DIsoB ` K ) ` W ) ` ( R ` F ) ) ) |
| 15 |
9 10 12 14
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( I ` ( R ` F ) ) = ( ( ( DIsoB ` K ) ` W ) ` ( R ` F ) ) ) |
| 16 |
1 2 3 4 5 6 13 8
|
dib1dim2 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( ( DIsoB ` K ) ` W ) ` ( R ` F ) ) = ( N ` { <. F , O >. } ) ) |
| 17 |
15 16
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( I ` ( R ` F ) ) = ( N ` { <. F , O >. } ) ) |