Step |
Hyp |
Ref |
Expression |
1 |
|
dih1dimb2.b |
|- B = ( Base ` K ) |
2 |
|
dih1dimb2.l |
|- .<_ = ( le ` K ) |
3 |
|
dih1dimb2.a |
|- A = ( Atoms ` K ) |
4 |
|
dih1dimb2.h |
|- H = ( LHyp ` K ) |
5 |
|
dih1dimb2.t |
|- T = ( ( LTrn ` K ) ` W ) |
6 |
|
dih1dimb2.o |
|- O = ( h e. T |-> ( _I |` B ) ) |
7 |
|
dih1dimb2.u |
|- U = ( ( DVecH ` K ) ` W ) |
8 |
|
dih1dimb2.i |
|- I = ( ( DIsoH ` K ) ` W ) |
9 |
|
dih1dimb2.n |
|- N = ( LSpan ` U ) |
10 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
11 |
2 3 4 5 10
|
cdlemf |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ Q .<_ W ) ) -> E. f e. T ( ( ( trL ` K ) ` W ) ` f ) = Q ) |
12 |
|
simp3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ Q .<_ W ) ) /\ f e. T /\ ( ( ( trL ` K ) ` W ) ` f ) = Q ) -> ( ( ( trL ` K ) ` W ) ` f ) = Q ) |
13 |
|
simp1rl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ Q .<_ W ) ) /\ f e. T /\ ( ( ( trL ` K ) ` W ) ` f ) = Q ) -> Q e. A ) |
14 |
12 13
|
eqeltrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ Q .<_ W ) ) /\ f e. T /\ ( ( ( trL ` K ) ` W ) ` f ) = Q ) -> ( ( ( trL ` K ) ` W ) ` f ) e. A ) |
15 |
|
simp1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ Q .<_ W ) ) /\ f e. T /\ ( ( ( trL ` K ) ` W ) ` f ) = Q ) -> ( K e. HL /\ W e. H ) ) |
16 |
|
simp2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ Q .<_ W ) ) /\ f e. T /\ ( ( ( trL ` K ) ` W ) ` f ) = Q ) -> f e. T ) |
17 |
1 3 4 5 10
|
trlnidatb |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. T ) -> ( f =/= ( _I |` B ) <-> ( ( ( trL ` K ) ` W ) ` f ) e. A ) ) |
18 |
15 16 17
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ Q .<_ W ) ) /\ f e. T /\ ( ( ( trL ` K ) ` W ) ` f ) = Q ) -> ( f =/= ( _I |` B ) <-> ( ( ( trL ` K ) ` W ) ` f ) e. A ) ) |
19 |
14 18
|
mpbird |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ Q .<_ W ) ) /\ f e. T /\ ( ( ( trL ` K ) ` W ) ` f ) = Q ) -> f =/= ( _I |` B ) ) |
20 |
12
|
fveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ Q .<_ W ) ) /\ f e. T /\ ( ( ( trL ` K ) ` W ) ` f ) = Q ) -> ( I ` ( ( ( trL ` K ) ` W ) ` f ) ) = ( I ` Q ) ) |
21 |
1 4 5 10 6 7 8 9
|
dih1dimb |
|- ( ( ( K e. HL /\ W e. H ) /\ f e. T ) -> ( I ` ( ( ( trL ` K ) ` W ) ` f ) ) = ( N ` { <. f , O >. } ) ) |
22 |
15 16 21
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ Q .<_ W ) ) /\ f e. T /\ ( ( ( trL ` K ) ` W ) ` f ) = Q ) -> ( I ` ( ( ( trL ` K ) ` W ) ` f ) ) = ( N ` { <. f , O >. } ) ) |
23 |
20 22
|
eqtr3d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ Q .<_ W ) ) /\ f e. T /\ ( ( ( trL ` K ) ` W ) ` f ) = Q ) -> ( I ` Q ) = ( N ` { <. f , O >. } ) ) |
24 |
19 23
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ Q .<_ W ) ) /\ f e. T /\ ( ( ( trL ` K ) ` W ) ` f ) = Q ) -> ( f =/= ( _I |` B ) /\ ( I ` Q ) = ( N ` { <. f , O >. } ) ) ) |
25 |
24
|
3expia |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ Q .<_ W ) ) /\ f e. T ) -> ( ( ( ( trL ` K ) ` W ) ` f ) = Q -> ( f =/= ( _I |` B ) /\ ( I ` Q ) = ( N ` { <. f , O >. } ) ) ) ) |
26 |
25
|
reximdva |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ Q .<_ W ) ) -> ( E. f e. T ( ( ( trL ` K ) ` W ) ` f ) = Q -> E. f e. T ( f =/= ( _I |` B ) /\ ( I ` Q ) = ( N ` { <. f , O >. } ) ) ) ) |
27 |
11 26
|
mpd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ Q .<_ W ) ) -> E. f e. T ( f =/= ( _I |` B ) /\ ( I ` Q ) = ( N ` { <. f , O >. } ) ) ) |