Metamath Proof Explorer


Theorem dih1dimb2

Description: Isomorphism H at an atom under W . (Contributed by NM, 27-Apr-2014)

Ref Expression
Hypotheses dih1dimb2.b B=BaseK
dih1dimb2.l ˙=K
dih1dimb2.a A=AtomsK
dih1dimb2.h H=LHypK
dih1dimb2.t T=LTrnKW
dih1dimb2.o O=hTIB
dih1dimb2.u U=DVecHKW
dih1dimb2.i I=DIsoHKW
dih1dimb2.n N=LSpanU
Assertion dih1dimb2 KHLWHQAQ˙WfTfIBIQ=NfO

Proof

Step Hyp Ref Expression
1 dih1dimb2.b B=BaseK
2 dih1dimb2.l ˙=K
3 dih1dimb2.a A=AtomsK
4 dih1dimb2.h H=LHypK
5 dih1dimb2.t T=LTrnKW
6 dih1dimb2.o O=hTIB
7 dih1dimb2.u U=DVecHKW
8 dih1dimb2.i I=DIsoHKW
9 dih1dimb2.n N=LSpanU
10 eqid trLKW=trLKW
11 2 3 4 5 10 cdlemf KHLWHQAQ˙WfTtrLKWf=Q
12 simp3 KHLWHQAQ˙WfTtrLKWf=QtrLKWf=Q
13 simp1rl KHLWHQAQ˙WfTtrLKWf=QQA
14 12 13 eqeltrd KHLWHQAQ˙WfTtrLKWf=QtrLKWfA
15 simp1l KHLWHQAQ˙WfTtrLKWf=QKHLWH
16 simp2 KHLWHQAQ˙WfTtrLKWf=QfT
17 1 3 4 5 10 trlnidatb KHLWHfTfIBtrLKWfA
18 15 16 17 syl2anc KHLWHQAQ˙WfTtrLKWf=QfIBtrLKWfA
19 14 18 mpbird KHLWHQAQ˙WfTtrLKWf=QfIB
20 12 fveq2d KHLWHQAQ˙WfTtrLKWf=QItrLKWf=IQ
21 1 4 5 10 6 7 8 9 dih1dimb KHLWHfTItrLKWf=NfO
22 15 16 21 syl2anc KHLWHQAQ˙WfTtrLKWf=QItrLKWf=NfO
23 20 22 eqtr3d KHLWHQAQ˙WfTtrLKWf=QIQ=NfO
24 19 23 jca KHLWHQAQ˙WfTtrLKWf=QfIBIQ=NfO
25 24 3expia KHLWHQAQ˙WfTtrLKWf=QfIBIQ=NfO
26 25 reximdva KHLWHQAQ˙WfTtrLKWf=QfTfIBIQ=NfO
27 11 26 mpd KHLWHQAQ˙WfTfIBIQ=NfO