Metamath Proof Explorer


Theorem dih1dimc

Description: Isomorphism H at an atom not under W . (Contributed by NM, 27-Apr-2014)

Ref Expression
Hypotheses dih1dimc.l ˙=K
dih1dimc.a A=AtomsK
dih1dimc.h H=LHypK
dih1dimc.p P=ocKW
dih1dimc.t T=LTrnKW
dih1dimc.i I=DIsoHKW
dih1dimc.u U=DVecHKW
dih1dimc.n N=LSpanU
dih1dimc.f F=ιfT|fP=Q
Assertion dih1dimc KHLWHQA¬Q˙WIQ=NFIT

Proof

Step Hyp Ref Expression
1 dih1dimc.l ˙=K
2 dih1dimc.a A=AtomsK
3 dih1dimc.h H=LHypK
4 dih1dimc.p P=ocKW
5 dih1dimc.t T=LTrnKW
6 dih1dimc.i I=DIsoHKW
7 dih1dimc.u U=DVecHKW
8 dih1dimc.n N=LSpanU
9 dih1dimc.f F=ιfT|fP=Q
10 eqid DIsoCKW=DIsoCKW
11 1 2 3 10 6 dihvalcqat KHLWHQA¬Q˙WIQ=DIsoCKWQ
12 1 2 3 4 5 10 7 8 9 diclspsn KHLWHQA¬Q˙WDIsoCKWQ=NFIT
13 11 12 eqtrd KHLWHQA¬Q˙WIQ=NFIT