Metamath Proof Explorer


Theorem dih1dimc

Description: Isomorphism H at an atom not under W . (Contributed by NM, 27-Apr-2014)

Ref Expression
Hypotheses dih1dimc.l ˙ = K
dih1dimc.a A = Atoms K
dih1dimc.h H = LHyp K
dih1dimc.p P = oc K W
dih1dimc.t T = LTrn K W
dih1dimc.i I = DIsoH K W
dih1dimc.u U = DVecH K W
dih1dimc.n N = LSpan U
dih1dimc.f F = ι f T | f P = Q
Assertion dih1dimc K HL W H Q A ¬ Q ˙ W I Q = N F I T

Proof

Step Hyp Ref Expression
1 dih1dimc.l ˙ = K
2 dih1dimc.a A = Atoms K
3 dih1dimc.h H = LHyp K
4 dih1dimc.p P = oc K W
5 dih1dimc.t T = LTrn K W
6 dih1dimc.i I = DIsoH K W
7 dih1dimc.u U = DVecH K W
8 dih1dimc.n N = LSpan U
9 dih1dimc.f F = ι f T | f P = Q
10 eqid DIsoC K W = DIsoC K W
11 1 2 3 10 6 dihvalcqat K HL W H Q A ¬ Q ˙ W I Q = DIsoC K W Q
12 1 2 3 4 5 10 7 8 9 diclspsn K HL W H Q A ¬ Q ˙ W DIsoC K W Q = N F I T
13 11 12 eqtrd K HL W H Q A ¬ Q ˙ W I Q = N F I T