Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
dih1dimc
Next ⟩
dib2dim
Metamath Proof Explorer
Ascii
Unicode
Theorem
dih1dimc
Description:
Isomorphism H at an atom not under
W
.
(Contributed by
NM
, 27-Apr-2014)
Ref
Expression
Hypotheses
dih1dimc.l
⊢
≤
˙
=
≤
K
dih1dimc.a
⊢
A
=
Atoms
⁡
K
dih1dimc.h
⊢
H
=
LHyp
⁡
K
dih1dimc.p
⊢
P
=
oc
⁡
K
⁡
W
dih1dimc.t
⊢
T
=
LTrn
⁡
K
⁡
W
dih1dimc.i
⊢
I
=
DIsoH
⁡
K
⁡
W
dih1dimc.u
⊢
U
=
DVecH
⁡
K
⁡
W
dih1dimc.n
⊢
N
=
LSpan
⁡
U
dih1dimc.f
⊢
F
=
ι
f
∈
T
|
f
⁡
P
=
Q
Assertion
dih1dimc
⊢
K
∈
HL
∧
W
∈
H
∧
Q
∈
A
∧
¬
Q
≤
˙
W
→
I
⁡
Q
=
N
⁡
F
I
↾
T
Proof
Step
Hyp
Ref
Expression
1
dih1dimc.l
⊢
≤
˙
=
≤
K
2
dih1dimc.a
⊢
A
=
Atoms
⁡
K
3
dih1dimc.h
⊢
H
=
LHyp
⁡
K
4
dih1dimc.p
⊢
P
=
oc
⁡
K
⁡
W
5
dih1dimc.t
⊢
T
=
LTrn
⁡
K
⁡
W
6
dih1dimc.i
⊢
I
=
DIsoH
⁡
K
⁡
W
7
dih1dimc.u
⊢
U
=
DVecH
⁡
K
⁡
W
8
dih1dimc.n
⊢
N
=
LSpan
⁡
U
9
dih1dimc.f
⊢
F
=
ι
f
∈
T
|
f
⁡
P
=
Q
10
eqid
⊢
DIsoC
⁡
K
⁡
W
=
DIsoC
⁡
K
⁡
W
11
1
2
3
10
6
dihvalcqat
⊢
K
∈
HL
∧
W
∈
H
∧
Q
∈
A
∧
¬
Q
≤
˙
W
→
I
⁡
Q
=
DIsoC
⁡
K
⁡
W
⁡
Q
12
1
2
3
4
5
10
7
8
9
diclspsn
⊢
K
∈
HL
∧
W
∈
H
∧
Q
∈
A
∧
¬
Q
≤
˙
W
→
DIsoC
⁡
K
⁡
W
⁡
Q
=
N
⁡
F
I
↾
T
13
11
12
eqtrd
⊢
K
∈
HL
∧
W
∈
H
∧
Q
∈
A
∧
¬
Q
≤
˙
W
→
I
⁡
Q
=
N
⁡
F
I
↾
T