Metamath Proof Explorer


Theorem dib2dim

Description: Extend dia2dim to partial isomorphism B. (Contributed by NM, 22-Sep-2014)

Ref Expression
Hypotheses dib2dim.l ˙ = K
dib2dim.j ˙ = join K
dib2dim.a A = Atoms K
dib2dim.h H = LHyp K
dib2dim.u U = DVecH K W
dib2dim.s ˙ = LSSum U
dib2dim.i I = DIsoB K W
dib2dim.k φ K HL W H
dib2dim.p φ P A P ˙ W
dib2dim.q φ Q A Q ˙ W
Assertion dib2dim φ I P ˙ Q I P ˙ I Q

Proof

Step Hyp Ref Expression
1 dib2dim.l ˙ = K
2 dib2dim.j ˙ = join K
3 dib2dim.a A = Atoms K
4 dib2dim.h H = LHyp K
5 dib2dim.u U = DVecH K W
6 dib2dim.s ˙ = LSSum U
7 dib2dim.i I = DIsoB K W
8 dib2dim.k φ K HL W H
9 dib2dim.p φ P A P ˙ W
10 dib2dim.q φ Q A Q ˙ W
11 4 7 dibvalrel K HL W H Rel I P ˙ Q
12 8 11 syl φ Rel I P ˙ Q
13 eqid DVecA K W = DVecA K W
14 eqid LSSum DVecA K W = LSSum DVecA K W
15 eqid DIsoA K W = DIsoA K W
16 1 2 3 4 13 14 15 8 9 10 dia2dim φ DIsoA K W P ˙ Q DIsoA K W P LSSum DVecA K W DIsoA K W Q
17 16 sseld φ f DIsoA K W P ˙ Q f DIsoA K W P LSSum DVecA K W DIsoA K W Q
18 17 anim1d φ f DIsoA K W P ˙ Q s = f LTrn K W I Base K f DIsoA K W P LSSum DVecA K W DIsoA K W Q s = f LTrn K W I Base K
19 8 simpld φ K HL
20 9 simpld φ P A
21 10 simpld φ Q A
22 eqid Base K = Base K
23 22 2 3 hlatjcl K HL P A Q A P ˙ Q Base K
24 19 20 21 23 syl3anc φ P ˙ Q Base K
25 9 simprd φ P ˙ W
26 10 simprd φ Q ˙ W
27 19 hllatd φ K Lat
28 22 3 atbase P A P Base K
29 20 28 syl φ P Base K
30 22 3 atbase Q A Q Base K
31 21 30 syl φ Q Base K
32 8 simprd φ W H
33 22 4 lhpbase W H W Base K
34 32 33 syl φ W Base K
35 22 1 2 latjle12 K Lat P Base K Q Base K W Base K P ˙ W Q ˙ W P ˙ Q ˙ W
36 27 29 31 34 35 syl13anc φ P ˙ W Q ˙ W P ˙ Q ˙ W
37 25 26 36 mpbi2and φ P ˙ Q ˙ W
38 eqid LTrn K W = LTrn K W
39 eqid f LTrn K W I Base K = f LTrn K W I Base K
40 22 1 4 38 39 15 7 dibopelval2 K HL W H P ˙ Q Base K P ˙ Q ˙ W f s I P ˙ Q f DIsoA K W P ˙ Q s = f LTrn K W I Base K
41 8 24 37 40 syl12anc φ f s I P ˙ Q f DIsoA K W P ˙ Q s = f LTrn K W I Base K
42 29 25 jca φ P Base K P ˙ W
43 31 26 jca φ Q Base K Q ˙ W
44 22 1 4 38 39 13 5 14 6 15 7 8 42 43 diblsmopel φ f s I P ˙ I Q f DIsoA K W P LSSum DVecA K W DIsoA K W Q s = f LTrn K W I Base K
45 18 41 44 3imtr4d φ f s I P ˙ Q f s I P ˙ I Q
46 12 45 relssdv φ I P ˙ Q I P ˙ I Q