Step |
Hyp |
Ref |
Expression |
1 |
|
dib2dim.l |
|- .<_ = ( le ` K ) |
2 |
|
dib2dim.j |
|- .\/ = ( join ` K ) |
3 |
|
dib2dim.a |
|- A = ( Atoms ` K ) |
4 |
|
dib2dim.h |
|- H = ( LHyp ` K ) |
5 |
|
dib2dim.u |
|- U = ( ( DVecH ` K ) ` W ) |
6 |
|
dib2dim.s |
|- .(+) = ( LSSum ` U ) |
7 |
|
dib2dim.i |
|- I = ( ( DIsoB ` K ) ` W ) |
8 |
|
dib2dim.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
dib2dim.p |
|- ( ph -> ( P e. A /\ P .<_ W ) ) |
10 |
|
dib2dim.q |
|- ( ph -> ( Q e. A /\ Q .<_ W ) ) |
11 |
4 7
|
dibvalrel |
|- ( ( K e. HL /\ W e. H ) -> Rel ( I ` ( P .\/ Q ) ) ) |
12 |
8 11
|
syl |
|- ( ph -> Rel ( I ` ( P .\/ Q ) ) ) |
13 |
|
eqid |
|- ( ( DVecA ` K ) ` W ) = ( ( DVecA ` K ) ` W ) |
14 |
|
eqid |
|- ( LSSum ` ( ( DVecA ` K ) ` W ) ) = ( LSSum ` ( ( DVecA ` K ) ` W ) ) |
15 |
|
eqid |
|- ( ( DIsoA ` K ) ` W ) = ( ( DIsoA ` K ) ` W ) |
16 |
1 2 3 4 13 14 15 8 9 10
|
dia2dim |
|- ( ph -> ( ( ( DIsoA ` K ) ` W ) ` ( P .\/ Q ) ) C_ ( ( ( ( DIsoA ` K ) ` W ) ` P ) ( LSSum ` ( ( DVecA ` K ) ` W ) ) ( ( ( DIsoA ` K ) ` W ) ` Q ) ) ) |
17 |
16
|
sseld |
|- ( ph -> ( f e. ( ( ( DIsoA ` K ) ` W ) ` ( P .\/ Q ) ) -> f e. ( ( ( ( DIsoA ` K ) ` W ) ` P ) ( LSSum ` ( ( DVecA ` K ) ` W ) ) ( ( ( DIsoA ` K ) ` W ) ` Q ) ) ) ) |
18 |
17
|
anim1d |
|- ( ph -> ( ( f e. ( ( ( DIsoA ` K ) ` W ) ` ( P .\/ Q ) ) /\ s = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) ) -> ( f e. ( ( ( ( DIsoA ` K ) ` W ) ` P ) ( LSSum ` ( ( DVecA ` K ) ` W ) ) ( ( ( DIsoA ` K ) ` W ) ` Q ) ) /\ s = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) ) ) ) |
19 |
8
|
simpld |
|- ( ph -> K e. HL ) |
20 |
9
|
simpld |
|- ( ph -> P e. A ) |
21 |
10
|
simpld |
|- ( ph -> Q e. A ) |
22 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
23 |
22 2 3
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
24 |
19 20 21 23
|
syl3anc |
|- ( ph -> ( P .\/ Q ) e. ( Base ` K ) ) |
25 |
9
|
simprd |
|- ( ph -> P .<_ W ) |
26 |
10
|
simprd |
|- ( ph -> Q .<_ W ) |
27 |
19
|
hllatd |
|- ( ph -> K e. Lat ) |
28 |
22 3
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
29 |
20 28
|
syl |
|- ( ph -> P e. ( Base ` K ) ) |
30 |
22 3
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
31 |
21 30
|
syl |
|- ( ph -> Q e. ( Base ` K ) ) |
32 |
8
|
simprd |
|- ( ph -> W e. H ) |
33 |
22 4
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
34 |
32 33
|
syl |
|- ( ph -> W e. ( Base ` K ) ) |
35 |
22 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( P .<_ W /\ Q .<_ W ) <-> ( P .\/ Q ) .<_ W ) ) |
36 |
27 29 31 34 35
|
syl13anc |
|- ( ph -> ( ( P .<_ W /\ Q .<_ W ) <-> ( P .\/ Q ) .<_ W ) ) |
37 |
25 26 36
|
mpbi2and |
|- ( ph -> ( P .\/ Q ) .<_ W ) |
38 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
39 |
|
eqid |
|- ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) |
40 |
22 1 4 38 39 15 7
|
dibopelval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ ( P .\/ Q ) .<_ W ) ) -> ( <. f , s >. e. ( I ` ( P .\/ Q ) ) <-> ( f e. ( ( ( DIsoA ` K ) ` W ) ` ( P .\/ Q ) ) /\ s = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) ) ) ) |
41 |
8 24 37 40
|
syl12anc |
|- ( ph -> ( <. f , s >. e. ( I ` ( P .\/ Q ) ) <-> ( f e. ( ( ( DIsoA ` K ) ` W ) ` ( P .\/ Q ) ) /\ s = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) ) ) ) |
42 |
29 25
|
jca |
|- ( ph -> ( P e. ( Base ` K ) /\ P .<_ W ) ) |
43 |
31 26
|
jca |
|- ( ph -> ( Q e. ( Base ` K ) /\ Q .<_ W ) ) |
44 |
22 1 4 38 39 13 5 14 6 15 7 8 42 43
|
diblsmopel |
|- ( ph -> ( <. f , s >. e. ( ( I ` P ) .(+) ( I ` Q ) ) <-> ( f e. ( ( ( ( DIsoA ` K ) ` W ) ` P ) ( LSSum ` ( ( DVecA ` K ) ` W ) ) ( ( ( DIsoA ` K ) ` W ) ` Q ) ) /\ s = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) ) ) ) |
45 |
18 41 44
|
3imtr4d |
|- ( ph -> ( <. f , s >. e. ( I ` ( P .\/ Q ) ) -> <. f , s >. e. ( ( I ` P ) .(+) ( I ` Q ) ) ) ) |
46 |
12 45
|
relssdv |
|- ( ph -> ( I ` ( P .\/ Q ) ) C_ ( ( I ` P ) .(+) ( I ` Q ) ) ) |