Metamath Proof Explorer


Theorem dia2dim

Description: A two-dimensional subspace of partial vector space A is closed, or equivalently, the isomorphism of a join of two atoms is a subset of the subspace sum of the isomorphisms of each atom (and thus they are equal, as shown later for the full vector space H). (Contributed by NM, 9-Sep-2014)

Ref Expression
Hypotheses dia2dim.l
|- .<_ = ( le ` K )
dia2dim.j
|- .\/ = ( join ` K )
dia2dim.a
|- A = ( Atoms ` K )
dia2dim.h
|- H = ( LHyp ` K )
dia2dim.y
|- Y = ( ( DVecA ` K ) ` W )
dia2dim.pl
|- .(+) = ( LSSum ` Y )
dia2dim.i
|- I = ( ( DIsoA ` K ) ` W )
dia2dim.k
|- ( ph -> ( K e. HL /\ W e. H ) )
dia2dim.u
|- ( ph -> ( U e. A /\ U .<_ W ) )
dia2dim.v
|- ( ph -> ( V e. A /\ V .<_ W ) )
Assertion dia2dim
|- ( ph -> ( I ` ( U .\/ V ) ) C_ ( ( I ` U ) .(+) ( I ` V ) ) )

Proof

Step Hyp Ref Expression
1 dia2dim.l
 |-  .<_ = ( le ` K )
2 dia2dim.j
 |-  .\/ = ( join ` K )
3 dia2dim.a
 |-  A = ( Atoms ` K )
4 dia2dim.h
 |-  H = ( LHyp ` K )
5 dia2dim.y
 |-  Y = ( ( DVecA ` K ) ` W )
6 dia2dim.pl
 |-  .(+) = ( LSSum ` Y )
7 dia2dim.i
 |-  I = ( ( DIsoA ` K ) ` W )
8 dia2dim.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 dia2dim.u
 |-  ( ph -> ( U e. A /\ U .<_ W ) )
10 dia2dim.v
 |-  ( ph -> ( V e. A /\ V .<_ W ) )
11 eqid
 |-  ( meet ` K ) = ( meet ` K )
12 eqid
 |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W )
13 eqid
 |-  ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W )
14 eqid
 |-  ( LSubSp ` Y ) = ( LSubSp ` Y )
15 eqid
 |-  ( LSpan ` Y ) = ( LSpan ` Y )
16 1 2 11 3 4 12 13 5 14 6 15 7 8 9 10 dia2dimlem13
 |-  ( ph -> ( I ` ( U .\/ V ) ) C_ ( ( I ` U ) .(+) ( I ` V ) ) )