Metamath Proof Explorer


Theorem dia2dimlem13

Description: Lemma for dia2dim . Eliminate U =/= V condition. (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem12.l
|- .<_ = ( le ` K )
dia2dimlem12.j
|- .\/ = ( join ` K )
dia2dimlem12.m
|- ./\ = ( meet ` K )
dia2dimlem12.a
|- A = ( Atoms ` K )
dia2dimlem12.h
|- H = ( LHyp ` K )
dia2dimlem12.t
|- T = ( ( LTrn ` K ) ` W )
dia2dimlem12.r
|- R = ( ( trL ` K ) ` W )
dia2dimlem12.y
|- Y = ( ( DVecA ` K ) ` W )
dia2dimlem12.s
|- S = ( LSubSp ` Y )
dia2dimlem12.pl
|- .(+) = ( LSSum ` Y )
dia2dimlem12.n
|- N = ( LSpan ` Y )
dia2dimlem12.i
|- I = ( ( DIsoA ` K ) ` W )
dia2dimlem12.k
|- ( ph -> ( K e. HL /\ W e. H ) )
dia2dimlem12.u
|- ( ph -> ( U e. A /\ U .<_ W ) )
dia2dimlem12.v
|- ( ph -> ( V e. A /\ V .<_ W ) )
Assertion dia2dimlem13
|- ( ph -> ( I ` ( U .\/ V ) ) C_ ( ( I ` U ) .(+) ( I ` V ) ) )

Proof

Step Hyp Ref Expression
1 dia2dimlem12.l
 |-  .<_ = ( le ` K )
2 dia2dimlem12.j
 |-  .\/ = ( join ` K )
3 dia2dimlem12.m
 |-  ./\ = ( meet ` K )
4 dia2dimlem12.a
 |-  A = ( Atoms ` K )
5 dia2dimlem12.h
 |-  H = ( LHyp ` K )
6 dia2dimlem12.t
 |-  T = ( ( LTrn ` K ) ` W )
7 dia2dimlem12.r
 |-  R = ( ( trL ` K ) ` W )
8 dia2dimlem12.y
 |-  Y = ( ( DVecA ` K ) ` W )
9 dia2dimlem12.s
 |-  S = ( LSubSp ` Y )
10 dia2dimlem12.pl
 |-  .(+) = ( LSSum ` Y )
11 dia2dimlem12.n
 |-  N = ( LSpan ` Y )
12 dia2dimlem12.i
 |-  I = ( ( DIsoA ` K ) ` W )
13 dia2dimlem12.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
14 dia2dimlem12.u
 |-  ( ph -> ( U e. A /\ U .<_ W ) )
15 dia2dimlem12.v
 |-  ( ph -> ( V e. A /\ V .<_ W ) )
16 oveq2
 |-  ( U = V -> ( U .\/ U ) = ( U .\/ V ) )
17 16 adantl
 |-  ( ( ph /\ U = V ) -> ( U .\/ U ) = ( U .\/ V ) )
18 13 simpld
 |-  ( ph -> K e. HL )
19 14 simpld
 |-  ( ph -> U e. A )
20 2 4 hlatjidm
 |-  ( ( K e. HL /\ U e. A ) -> ( U .\/ U ) = U )
21 18 19 20 syl2anc
 |-  ( ph -> ( U .\/ U ) = U )
22 21 adantr
 |-  ( ( ph /\ U = V ) -> ( U .\/ U ) = U )
23 17 22 eqtr3d
 |-  ( ( ph /\ U = V ) -> ( U .\/ V ) = U )
24 23 fveq2d
 |-  ( ( ph /\ U = V ) -> ( I ` ( U .\/ V ) ) = ( I ` U ) )
25 ssid
 |-  ( I ` U ) C_ ( I ` U )
26 24 25 eqsstrdi
 |-  ( ( ph /\ U = V ) -> ( I ` ( U .\/ V ) ) C_ ( I ` U ) )
27 5 8 dvalvec
 |-  ( ( K e. HL /\ W e. H ) -> Y e. LVec )
28 lveclmod
 |-  ( Y e. LVec -> Y e. LMod )
29 13 27 28 3syl
 |-  ( ph -> Y e. LMod )
30 eqid
 |-  ( Base ` K ) = ( Base ` K )
31 30 4 atbase
 |-  ( U e. A -> U e. ( Base ` K ) )
32 19 31 syl
 |-  ( ph -> U e. ( Base ` K ) )
33 14 simprd
 |-  ( ph -> U .<_ W )
34 30 1 5 8 12 9 dialss
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( U e. ( Base ` K ) /\ U .<_ W ) ) -> ( I ` U ) e. S )
35 13 32 33 34 syl12anc
 |-  ( ph -> ( I ` U ) e. S )
36 9 lsssubg
 |-  ( ( Y e. LMod /\ ( I ` U ) e. S ) -> ( I ` U ) e. ( SubGrp ` Y ) )
37 29 35 36 syl2anc
 |-  ( ph -> ( I ` U ) e. ( SubGrp ` Y ) )
38 10 lsmidm
 |-  ( ( I ` U ) e. ( SubGrp ` Y ) -> ( ( I ` U ) .(+) ( I ` U ) ) = ( I ` U ) )
39 37 38 syl
 |-  ( ph -> ( ( I ` U ) .(+) ( I ` U ) ) = ( I ` U ) )
40 fveq2
 |-  ( U = V -> ( I ` U ) = ( I ` V ) )
41 40 oveq2d
 |-  ( U = V -> ( ( I ` U ) .(+) ( I ` U ) ) = ( ( I ` U ) .(+) ( I ` V ) ) )
42 39 41 sylan9req
 |-  ( ( ph /\ U = V ) -> ( I ` U ) = ( ( I ` U ) .(+) ( I ` V ) ) )
43 26 42 sseqtrd
 |-  ( ( ph /\ U = V ) -> ( I ` ( U .\/ V ) ) C_ ( ( I ` U ) .(+) ( I ` V ) ) )
44 13 adantr
 |-  ( ( ph /\ U =/= V ) -> ( K e. HL /\ W e. H ) )
45 14 adantr
 |-  ( ( ph /\ U =/= V ) -> ( U e. A /\ U .<_ W ) )
46 15 adantr
 |-  ( ( ph /\ U =/= V ) -> ( V e. A /\ V .<_ W ) )
47 simpr
 |-  ( ( ph /\ U =/= V ) -> U =/= V )
48 1 2 3 4 5 6 7 8 9 10 11 12 44 45 46 47 dia2dimlem12
 |-  ( ( ph /\ U =/= V ) -> ( I ` ( U .\/ V ) ) C_ ( ( I ` U ) .(+) ( I ` V ) ) )
49 43 48 pm2.61dane
 |-  ( ph -> ( I ` ( U .\/ V ) ) C_ ( ( I ` U ) .(+) ( I ` V ) ) )