| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dia2dimlem12.l |
|- .<_ = ( le ` K ) |
| 2 |
|
dia2dimlem12.j |
|- .\/ = ( join ` K ) |
| 3 |
|
dia2dimlem12.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
dia2dimlem12.a |
|- A = ( Atoms ` K ) |
| 5 |
|
dia2dimlem12.h |
|- H = ( LHyp ` K ) |
| 6 |
|
dia2dimlem12.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 7 |
|
dia2dimlem12.r |
|- R = ( ( trL ` K ) ` W ) |
| 8 |
|
dia2dimlem12.y |
|- Y = ( ( DVecA ` K ) ` W ) |
| 9 |
|
dia2dimlem12.s |
|- S = ( LSubSp ` Y ) |
| 10 |
|
dia2dimlem12.pl |
|- .(+) = ( LSSum ` Y ) |
| 11 |
|
dia2dimlem12.n |
|- N = ( LSpan ` Y ) |
| 12 |
|
dia2dimlem12.i |
|- I = ( ( DIsoA ` K ) ` W ) |
| 13 |
|
dia2dimlem12.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 14 |
|
dia2dimlem12.u |
|- ( ph -> ( U e. A /\ U .<_ W ) ) |
| 15 |
|
dia2dimlem12.v |
|- ( ph -> ( V e. A /\ V .<_ W ) ) |
| 16 |
|
oveq2 |
|- ( U = V -> ( U .\/ U ) = ( U .\/ V ) ) |
| 17 |
16
|
adantl |
|- ( ( ph /\ U = V ) -> ( U .\/ U ) = ( U .\/ V ) ) |
| 18 |
13
|
simpld |
|- ( ph -> K e. HL ) |
| 19 |
14
|
simpld |
|- ( ph -> U e. A ) |
| 20 |
2 4
|
hlatjidm |
|- ( ( K e. HL /\ U e. A ) -> ( U .\/ U ) = U ) |
| 21 |
18 19 20
|
syl2anc |
|- ( ph -> ( U .\/ U ) = U ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ U = V ) -> ( U .\/ U ) = U ) |
| 23 |
17 22
|
eqtr3d |
|- ( ( ph /\ U = V ) -> ( U .\/ V ) = U ) |
| 24 |
23
|
fveq2d |
|- ( ( ph /\ U = V ) -> ( I ` ( U .\/ V ) ) = ( I ` U ) ) |
| 25 |
|
ssid |
|- ( I ` U ) C_ ( I ` U ) |
| 26 |
24 25
|
eqsstrdi |
|- ( ( ph /\ U = V ) -> ( I ` ( U .\/ V ) ) C_ ( I ` U ) ) |
| 27 |
5 8
|
dvalvec |
|- ( ( K e. HL /\ W e. H ) -> Y e. LVec ) |
| 28 |
|
lveclmod |
|- ( Y e. LVec -> Y e. LMod ) |
| 29 |
13 27 28
|
3syl |
|- ( ph -> Y e. LMod ) |
| 30 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 31 |
30 4
|
atbase |
|- ( U e. A -> U e. ( Base ` K ) ) |
| 32 |
19 31
|
syl |
|- ( ph -> U e. ( Base ` K ) ) |
| 33 |
14
|
simprd |
|- ( ph -> U .<_ W ) |
| 34 |
30 1 5 8 12 9
|
dialss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( U e. ( Base ` K ) /\ U .<_ W ) ) -> ( I ` U ) e. S ) |
| 35 |
13 32 33 34
|
syl12anc |
|- ( ph -> ( I ` U ) e. S ) |
| 36 |
9
|
lsssubg |
|- ( ( Y e. LMod /\ ( I ` U ) e. S ) -> ( I ` U ) e. ( SubGrp ` Y ) ) |
| 37 |
29 35 36
|
syl2anc |
|- ( ph -> ( I ` U ) e. ( SubGrp ` Y ) ) |
| 38 |
10
|
lsmidm |
|- ( ( I ` U ) e. ( SubGrp ` Y ) -> ( ( I ` U ) .(+) ( I ` U ) ) = ( I ` U ) ) |
| 39 |
37 38
|
syl |
|- ( ph -> ( ( I ` U ) .(+) ( I ` U ) ) = ( I ` U ) ) |
| 40 |
|
fveq2 |
|- ( U = V -> ( I ` U ) = ( I ` V ) ) |
| 41 |
40
|
oveq2d |
|- ( U = V -> ( ( I ` U ) .(+) ( I ` U ) ) = ( ( I ` U ) .(+) ( I ` V ) ) ) |
| 42 |
39 41
|
sylan9req |
|- ( ( ph /\ U = V ) -> ( I ` U ) = ( ( I ` U ) .(+) ( I ` V ) ) ) |
| 43 |
26 42
|
sseqtrd |
|- ( ( ph /\ U = V ) -> ( I ` ( U .\/ V ) ) C_ ( ( I ` U ) .(+) ( I ` V ) ) ) |
| 44 |
13
|
adantr |
|- ( ( ph /\ U =/= V ) -> ( K e. HL /\ W e. H ) ) |
| 45 |
14
|
adantr |
|- ( ( ph /\ U =/= V ) -> ( U e. A /\ U .<_ W ) ) |
| 46 |
15
|
adantr |
|- ( ( ph /\ U =/= V ) -> ( V e. A /\ V .<_ W ) ) |
| 47 |
|
simpr |
|- ( ( ph /\ U =/= V ) -> U =/= V ) |
| 48 |
1 2 3 4 5 6 7 8 9 10 11 12 44 45 46 47
|
dia2dimlem12 |
|- ( ( ph /\ U =/= V ) -> ( I ` ( U .\/ V ) ) C_ ( ( I ` U ) .(+) ( I ` V ) ) ) |
| 49 |
43 48
|
pm2.61dane |
|- ( ph -> ( I ` ( U .\/ V ) ) C_ ( ( I ` U ) .(+) ( I ` V ) ) ) |