| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvalvec.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dvalvec.v |
|- U = ( ( DVecA ` K ) ` W ) |
| 3 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
| 4 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
| 5 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
| 6 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
| 7 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 8 |
|
eqid |
|- ( +g ` ( Scalar ` U ) ) = ( +g ` ( Scalar ` U ) ) |
| 9 |
|
eqid |
|- ( .r ` ( Scalar ` U ) ) = ( .r ` ( Scalar ` U ) ) |
| 10 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
dvalveclem |
|- ( ( K e. HL /\ W e. H ) -> U e. LVec ) |