Step |
Hyp |
Ref |
Expression |
1 |
|
dvalvec.h |
|- H = ( LHyp ` K ) |
2 |
|
dvalvec.v |
|- U = ( ( DVecA ` K ) ` W ) |
3 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
4 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
5 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
6 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
7 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
8 |
|
eqid |
|- ( +g ` ( Scalar ` U ) ) = ( +g ` ( Scalar ` U ) ) |
9 |
|
eqid |
|- ( .r ` ( Scalar ` U ) ) = ( .r ` ( Scalar ` U ) ) |
10 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
dvalveclem |
|- ( ( K e. HL /\ W e. H ) -> U e. LVec ) |