| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dva0g.b |
|- B = ( Base ` K ) |
| 2 |
|
dva0g.h |
|- H = ( LHyp ` K ) |
| 3 |
|
dva0g.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 4 |
|
dva0g.u |
|- U = ( ( DVecA ` K ) ` W ) |
| 5 |
|
dva0g.z |
|- .0. = ( 0g ` U ) |
| 6 |
|
id |
|- ( ( K e. HL /\ W e. H ) -> ( K e. HL /\ W e. H ) ) |
| 7 |
1 2 3
|
idltrn |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` B ) e. T ) |
| 8 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
| 9 |
2 3 4 8
|
dvavadd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( _I |` B ) e. T /\ ( _I |` B ) e. T ) ) -> ( ( _I |` B ) ( +g ` U ) ( _I |` B ) ) = ( ( _I |` B ) o. ( _I |` B ) ) ) |
| 10 |
6 7 7 9
|
syl12anc |
|- ( ( K e. HL /\ W e. H ) -> ( ( _I |` B ) ( +g ` U ) ( _I |` B ) ) = ( ( _I |` B ) o. ( _I |` B ) ) ) |
| 11 |
|
f1oi |
|- ( _I |` B ) : B -1-1-onto-> B |
| 12 |
|
f1of |
|- ( ( _I |` B ) : B -1-1-onto-> B -> ( _I |` B ) : B --> B ) |
| 13 |
|
fcoi2 |
|- ( ( _I |` B ) : B --> B -> ( ( _I |` B ) o. ( _I |` B ) ) = ( _I |` B ) ) |
| 14 |
11 12 13
|
mp2b |
|- ( ( _I |` B ) o. ( _I |` B ) ) = ( _I |` B ) |
| 15 |
10 14
|
eqtrdi |
|- ( ( K e. HL /\ W e. H ) -> ( ( _I |` B ) ( +g ` U ) ( _I |` B ) ) = ( _I |` B ) ) |
| 16 |
2 4
|
dvalvec |
|- ( ( K e. HL /\ W e. H ) -> U e. LVec ) |
| 17 |
|
lveclmod |
|- ( U e. LVec -> U e. LMod ) |
| 18 |
16 17
|
syl |
|- ( ( K e. HL /\ W e. H ) -> U e. LMod ) |
| 19 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 20 |
2 3 4 19
|
dvavbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` U ) = T ) |
| 21 |
7 20
|
eleqtrrd |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` B ) e. ( Base ` U ) ) |
| 22 |
19 8 5
|
lmod0vid |
|- ( ( U e. LMod /\ ( _I |` B ) e. ( Base ` U ) ) -> ( ( ( _I |` B ) ( +g ` U ) ( _I |` B ) ) = ( _I |` B ) <-> .0. = ( _I |` B ) ) ) |
| 23 |
18 21 22
|
syl2anc |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( _I |` B ) ( +g ` U ) ( _I |` B ) ) = ( _I |` B ) <-> .0. = ( _I |` B ) ) ) |
| 24 |
15 23
|
mpbid |
|- ( ( K e. HL /\ W e. H ) -> .0. = ( _I |` B ) ) |