Step |
Hyp |
Ref |
Expression |
1 |
|
dva0g.b |
|- B = ( Base ` K ) |
2 |
|
dva0g.h |
|- H = ( LHyp ` K ) |
3 |
|
dva0g.t |
|- T = ( ( LTrn ` K ) ` W ) |
4 |
|
dva0g.u |
|- U = ( ( DVecA ` K ) ` W ) |
5 |
|
dva0g.z |
|- .0. = ( 0g ` U ) |
6 |
|
id |
|- ( ( K e. HL /\ W e. H ) -> ( K e. HL /\ W e. H ) ) |
7 |
1 2 3
|
idltrn |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` B ) e. T ) |
8 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
9 |
2 3 4 8
|
dvavadd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( _I |` B ) e. T /\ ( _I |` B ) e. T ) ) -> ( ( _I |` B ) ( +g ` U ) ( _I |` B ) ) = ( ( _I |` B ) o. ( _I |` B ) ) ) |
10 |
6 7 7 9
|
syl12anc |
|- ( ( K e. HL /\ W e. H ) -> ( ( _I |` B ) ( +g ` U ) ( _I |` B ) ) = ( ( _I |` B ) o. ( _I |` B ) ) ) |
11 |
|
f1oi |
|- ( _I |` B ) : B -1-1-onto-> B |
12 |
|
f1of |
|- ( ( _I |` B ) : B -1-1-onto-> B -> ( _I |` B ) : B --> B ) |
13 |
|
fcoi2 |
|- ( ( _I |` B ) : B --> B -> ( ( _I |` B ) o. ( _I |` B ) ) = ( _I |` B ) ) |
14 |
11 12 13
|
mp2b |
|- ( ( _I |` B ) o. ( _I |` B ) ) = ( _I |` B ) |
15 |
10 14
|
eqtrdi |
|- ( ( K e. HL /\ W e. H ) -> ( ( _I |` B ) ( +g ` U ) ( _I |` B ) ) = ( _I |` B ) ) |
16 |
2 4
|
dvalvec |
|- ( ( K e. HL /\ W e. H ) -> U e. LVec ) |
17 |
|
lveclmod |
|- ( U e. LVec -> U e. LMod ) |
18 |
16 17
|
syl |
|- ( ( K e. HL /\ W e. H ) -> U e. LMod ) |
19 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
20 |
2 3 4 19
|
dvavbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` U ) = T ) |
21 |
7 20
|
eleqtrrd |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` B ) e. ( Base ` U ) ) |
22 |
19 8 5
|
lmod0vid |
|- ( ( U e. LMod /\ ( _I |` B ) e. ( Base ` U ) ) -> ( ( ( _I |` B ) ( +g ` U ) ( _I |` B ) ) = ( _I |` B ) <-> .0. = ( _I |` B ) ) ) |
23 |
18 21 22
|
syl2anc |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( _I |` B ) ( +g ` U ) ( _I |` B ) ) = ( _I |` B ) <-> .0. = ( _I |` B ) ) ) |
24 |
15 23
|
mpbid |
|- ( ( K e. HL /\ W e. H ) -> .0. = ( _I |` B ) ) |