Step |
Hyp |
Ref |
Expression |
1 |
|
dva0g.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dva0g.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dva0g.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dva0g.u |
⊢ 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dva0g.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
1 2 3
|
idltrn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝐵 ) ∈ 𝑇 ) |
8 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
9 |
2 3 4 8
|
dvavadd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( I ↾ 𝐵 ) ∈ 𝑇 ∧ ( I ↾ 𝐵 ) ∈ 𝑇 ) ) → ( ( I ↾ 𝐵 ) ( +g ‘ 𝑈 ) ( I ↾ 𝐵 ) ) = ( ( I ↾ 𝐵 ) ∘ ( I ↾ 𝐵 ) ) ) |
10 |
6 7 7 9
|
syl12anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( I ↾ 𝐵 ) ( +g ‘ 𝑈 ) ( I ↾ 𝐵 ) ) = ( ( I ↾ 𝐵 ) ∘ ( I ↾ 𝐵 ) ) ) |
11 |
|
f1oi |
⊢ ( I ↾ 𝐵 ) : 𝐵 –1-1-onto→ 𝐵 |
12 |
|
f1of |
⊢ ( ( I ↾ 𝐵 ) : 𝐵 –1-1-onto→ 𝐵 → ( I ↾ 𝐵 ) : 𝐵 ⟶ 𝐵 ) |
13 |
|
fcoi2 |
⊢ ( ( I ↾ 𝐵 ) : 𝐵 ⟶ 𝐵 → ( ( I ↾ 𝐵 ) ∘ ( I ↾ 𝐵 ) ) = ( I ↾ 𝐵 ) ) |
14 |
11 12 13
|
mp2b |
⊢ ( ( I ↾ 𝐵 ) ∘ ( I ↾ 𝐵 ) ) = ( I ↾ 𝐵 ) |
15 |
10 14
|
eqtrdi |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( I ↾ 𝐵 ) ( +g ‘ 𝑈 ) ( I ↾ 𝐵 ) ) = ( I ↾ 𝐵 ) ) |
16 |
2 4
|
dvalvec |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑈 ∈ LVec ) |
17 |
|
lveclmod |
⊢ ( 𝑈 ∈ LVec → 𝑈 ∈ LMod ) |
18 |
16 17
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑈 ∈ LMod ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
20 |
2 3 4 19
|
dvavbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ 𝑈 ) = 𝑇 ) |
21 |
7 20
|
eleqtrrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝐵 ) ∈ ( Base ‘ 𝑈 ) ) |
22 |
19 8 5
|
lmod0vid |
⊢ ( ( 𝑈 ∈ LMod ∧ ( I ↾ 𝐵 ) ∈ ( Base ‘ 𝑈 ) ) → ( ( ( I ↾ 𝐵 ) ( +g ‘ 𝑈 ) ( I ↾ 𝐵 ) ) = ( I ↾ 𝐵 ) ↔ 0 = ( I ↾ 𝐵 ) ) ) |
23 |
18 21 22
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ( I ↾ 𝐵 ) ( +g ‘ 𝑈 ) ( I ↾ 𝐵 ) ) = ( I ↾ 𝐵 ) ↔ 0 = ( I ↾ 𝐵 ) ) ) |
24 |
15 23
|
mpbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 0 = ( I ↾ 𝐵 ) ) |