Metamath Proof Explorer


Theorem dva0g

Description: The zero vector of partial vector space A. (Contributed by NM, 9-Sep-2014)

Ref Expression
Hypotheses dva0g.b B=BaseK
dva0g.h H=LHypK
dva0g.t T=LTrnKW
dva0g.u U=DVecAKW
dva0g.z 0˙=0U
Assertion dva0g KHLWH0˙=IB

Proof

Step Hyp Ref Expression
1 dva0g.b B=BaseK
2 dva0g.h H=LHypK
3 dva0g.t T=LTrnKW
4 dva0g.u U=DVecAKW
5 dva0g.z 0˙=0U
6 id KHLWHKHLWH
7 1 2 3 idltrn KHLWHIBT
8 eqid +U=+U
9 2 3 4 8 dvavadd KHLWHIBTIBTIB+UIB=IBIB
10 6 7 7 9 syl12anc KHLWHIB+UIB=IBIB
11 f1oi IB:B1-1 ontoB
12 f1of IB:B1-1 ontoBIB:BB
13 fcoi2 IB:BBIBIB=IB
14 11 12 13 mp2b IBIB=IB
15 10 14 eqtrdi KHLWHIB+UIB=IB
16 2 4 dvalvec KHLWHULVec
17 lveclmod ULVecULMod
18 16 17 syl KHLWHULMod
19 eqid BaseU=BaseU
20 2 3 4 19 dvavbase KHLWHBaseU=T
21 7 20 eleqtrrd KHLWHIBBaseU
22 19 8 5 lmod0vid ULModIBBaseUIB+UIB=IB0˙=IB
23 18 21 22 syl2anc KHLWHIB+UIB=IB0˙=IB
24 15 23 mpbid KHLWH0˙=IB