Metamath Proof Explorer


Theorem dvalvec

Description: The constructed partial vector space A for a lattice K is a left vector space. (Contributed by NM, 11-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvalvec.h H=LHypK
dvalvec.v U=DVecAKW
Assertion dvalvec KHLWHULVec

Proof

Step Hyp Ref Expression
1 dvalvec.h H=LHypK
2 dvalvec.v U=DVecAKW
3 eqid LTrnKW=LTrnKW
4 eqid +U=+U
5 eqid TEndoKW=TEndoKW
6 eqid ScalarU=ScalarU
7 eqid BaseK=BaseK
8 eqid +ScalarU=+ScalarU
9 eqid ScalarU=ScalarU
10 eqid U=U
11 1 2 3 4 5 6 7 8 9 10 dvalveclem KHLWHULVec