Step |
Hyp |
Ref |
Expression |
1 |
|
dia2dimlem12.l |
|- .<_ = ( le ` K ) |
2 |
|
dia2dimlem12.j |
|- .\/ = ( join ` K ) |
3 |
|
dia2dimlem12.m |
|- ./\ = ( meet ` K ) |
4 |
|
dia2dimlem12.a |
|- A = ( Atoms ` K ) |
5 |
|
dia2dimlem12.h |
|- H = ( LHyp ` K ) |
6 |
|
dia2dimlem12.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
dia2dimlem12.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
|
dia2dimlem12.y |
|- Y = ( ( DVecA ` K ) ` W ) |
9 |
|
dia2dimlem12.s |
|- S = ( LSubSp ` Y ) |
10 |
|
dia2dimlem12.pl |
|- .(+) = ( LSSum ` Y ) |
11 |
|
dia2dimlem12.n |
|- N = ( LSpan ` Y ) |
12 |
|
dia2dimlem12.i |
|- I = ( ( DIsoA ` K ) ` W ) |
13 |
|
dia2dimlem12.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
14 |
|
dia2dimlem12.u |
|- ( ph -> ( U e. A /\ U .<_ W ) ) |
15 |
|
dia2dimlem12.v |
|- ( ph -> ( V e. A /\ V .<_ W ) ) |
16 |
|
dia2dimlem12.uv |
|- ( ph -> U =/= V ) |
17 |
13
|
simpld |
|- ( ph -> K e. HL ) |
18 |
14
|
simpld |
|- ( ph -> U e. A ) |
19 |
15
|
simpld |
|- ( ph -> V e. A ) |
20 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
21 |
20 2 4
|
hlatjcl |
|- ( ( K e. HL /\ U e. A /\ V e. A ) -> ( U .\/ V ) e. ( Base ` K ) ) |
22 |
17 18 19 21
|
syl3anc |
|- ( ph -> ( U .\/ V ) e. ( Base ` K ) ) |
23 |
14
|
simprd |
|- ( ph -> U .<_ W ) |
24 |
15
|
simprd |
|- ( ph -> V .<_ W ) |
25 |
17
|
hllatd |
|- ( ph -> K e. Lat ) |
26 |
20 4
|
atbase |
|- ( U e. A -> U e. ( Base ` K ) ) |
27 |
18 26
|
syl |
|- ( ph -> U e. ( Base ` K ) ) |
28 |
20 4
|
atbase |
|- ( V e. A -> V e. ( Base ` K ) ) |
29 |
19 28
|
syl |
|- ( ph -> V e. ( Base ` K ) ) |
30 |
13
|
simprd |
|- ( ph -> W e. H ) |
31 |
20 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
32 |
30 31
|
syl |
|- ( ph -> W e. ( Base ` K ) ) |
33 |
20 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( U e. ( Base ` K ) /\ V e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( U .<_ W /\ V .<_ W ) <-> ( U .\/ V ) .<_ W ) ) |
34 |
25 27 29 32 33
|
syl13anc |
|- ( ph -> ( ( U .<_ W /\ V .<_ W ) <-> ( U .\/ V ) .<_ W ) ) |
35 |
23 24 34
|
mpbi2and |
|- ( ph -> ( U .\/ V ) .<_ W ) |
36 |
20 1 5 6 12
|
diass |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( U .\/ V ) e. ( Base ` K ) /\ ( U .\/ V ) .<_ W ) ) -> ( I ` ( U .\/ V ) ) C_ T ) |
37 |
13 22 35 36
|
syl12anc |
|- ( ph -> ( I ` ( U .\/ V ) ) C_ T ) |
38 |
37
|
sseld |
|- ( ph -> ( f e. ( I ` ( U .\/ V ) ) -> f e. T ) ) |
39 |
13
|
3ad2ant1 |
|- ( ( ph /\ f e. ( I ` ( U .\/ V ) ) /\ f e. T ) -> ( K e. HL /\ W e. H ) ) |
40 |
14
|
3ad2ant1 |
|- ( ( ph /\ f e. ( I ` ( U .\/ V ) ) /\ f e. T ) -> ( U e. A /\ U .<_ W ) ) |
41 |
15
|
3ad2ant1 |
|- ( ( ph /\ f e. ( I ` ( U .\/ V ) ) /\ f e. T ) -> ( V e. A /\ V .<_ W ) ) |
42 |
|
simp3 |
|- ( ( ph /\ f e. ( I ` ( U .\/ V ) ) /\ f e. T ) -> f e. T ) |
43 |
16
|
3ad2ant1 |
|- ( ( ph /\ f e. ( I ` ( U .\/ V ) ) /\ f e. T ) -> U =/= V ) |
44 |
|
simp2 |
|- ( ( ph /\ f e. ( I ` ( U .\/ V ) ) /\ f e. T ) -> f e. ( I ` ( U .\/ V ) ) ) |
45 |
1 2 3 4 5 6 7 8 9 10 11 12 39 40 41 42 43 44
|
dia2dimlem11 |
|- ( ( ph /\ f e. ( I ` ( U .\/ V ) ) /\ f e. T ) -> f e. ( ( I ` U ) .(+) ( I ` V ) ) ) |
46 |
45
|
3exp |
|- ( ph -> ( f e. ( I ` ( U .\/ V ) ) -> ( f e. T -> f e. ( ( I ` U ) .(+) ( I ` V ) ) ) ) ) |
47 |
38 46
|
mpdd |
|- ( ph -> ( f e. ( I ` ( U .\/ V ) ) -> f e. ( ( I ` U ) .(+) ( I ` V ) ) ) ) |
48 |
47
|
ssrdv |
|- ( ph -> ( I ` ( U .\/ V ) ) C_ ( ( I ` U ) .(+) ( I ` V ) ) ) |