Metamath Proof Explorer


Theorem dia2dimlem12

Description: Lemma for dia2dim . Obtain subset relation. (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem12.l ˙ = K
dia2dimlem12.j ˙ = join K
dia2dimlem12.m ˙ = meet K
dia2dimlem12.a A = Atoms K
dia2dimlem12.h H = LHyp K
dia2dimlem12.t T = LTrn K W
dia2dimlem12.r R = trL K W
dia2dimlem12.y Y = DVecA K W
dia2dimlem12.s S = LSubSp Y
dia2dimlem12.pl ˙ = LSSum Y
dia2dimlem12.n N = LSpan Y
dia2dimlem12.i I = DIsoA K W
dia2dimlem12.k φ K HL W H
dia2dimlem12.u φ U A U ˙ W
dia2dimlem12.v φ V A V ˙ W
dia2dimlem12.uv φ U V
Assertion dia2dimlem12 φ I U ˙ V I U ˙ I V

Proof

Step Hyp Ref Expression
1 dia2dimlem12.l ˙ = K
2 dia2dimlem12.j ˙ = join K
3 dia2dimlem12.m ˙ = meet K
4 dia2dimlem12.a A = Atoms K
5 dia2dimlem12.h H = LHyp K
6 dia2dimlem12.t T = LTrn K W
7 dia2dimlem12.r R = trL K W
8 dia2dimlem12.y Y = DVecA K W
9 dia2dimlem12.s S = LSubSp Y
10 dia2dimlem12.pl ˙ = LSSum Y
11 dia2dimlem12.n N = LSpan Y
12 dia2dimlem12.i I = DIsoA K W
13 dia2dimlem12.k φ K HL W H
14 dia2dimlem12.u φ U A U ˙ W
15 dia2dimlem12.v φ V A V ˙ W
16 dia2dimlem12.uv φ U V
17 13 simpld φ K HL
18 14 simpld φ U A
19 15 simpld φ V A
20 eqid Base K = Base K
21 20 2 4 hlatjcl K HL U A V A U ˙ V Base K
22 17 18 19 21 syl3anc φ U ˙ V Base K
23 14 simprd φ U ˙ W
24 15 simprd φ V ˙ W
25 17 hllatd φ K Lat
26 20 4 atbase U A U Base K
27 18 26 syl φ U Base K
28 20 4 atbase V A V Base K
29 19 28 syl φ V Base K
30 13 simprd φ W H
31 20 5 lhpbase W H W Base K
32 30 31 syl φ W Base K
33 20 1 2 latjle12 K Lat U Base K V Base K W Base K U ˙ W V ˙ W U ˙ V ˙ W
34 25 27 29 32 33 syl13anc φ U ˙ W V ˙ W U ˙ V ˙ W
35 23 24 34 mpbi2and φ U ˙ V ˙ W
36 20 1 5 6 12 diass K HL W H U ˙ V Base K U ˙ V ˙ W I U ˙ V T
37 13 22 35 36 syl12anc φ I U ˙ V T
38 37 sseld φ f I U ˙ V f T
39 13 3ad2ant1 φ f I U ˙ V f T K HL W H
40 14 3ad2ant1 φ f I U ˙ V f T U A U ˙ W
41 15 3ad2ant1 φ f I U ˙ V f T V A V ˙ W
42 simp3 φ f I U ˙ V f T f T
43 16 3ad2ant1 φ f I U ˙ V f T U V
44 simp2 φ f I U ˙ V f T f I U ˙ V
45 1 2 3 4 5 6 7 8 9 10 11 12 39 40 41 42 43 44 dia2dimlem11 φ f I U ˙ V f T f I U ˙ I V
46 45 3exp φ f I U ˙ V f T f I U ˙ I V
47 38 46 mpdd φ f I U ˙ V f I U ˙ I V
48 47 ssrdv φ I U ˙ V I U ˙ I V