Step |
Hyp |
Ref |
Expression |
1 |
|
dia2dimlem12.l |
|
2 |
|
dia2dimlem12.j |
|
3 |
|
dia2dimlem12.m |
|
4 |
|
dia2dimlem12.a |
|
5 |
|
dia2dimlem12.h |
|
6 |
|
dia2dimlem12.t |
|
7 |
|
dia2dimlem12.r |
|
8 |
|
dia2dimlem12.y |
|
9 |
|
dia2dimlem12.s |
|
10 |
|
dia2dimlem12.pl |
|
11 |
|
dia2dimlem12.n |
|
12 |
|
dia2dimlem12.i |
|
13 |
|
dia2dimlem12.k |
|
14 |
|
dia2dimlem12.u |
|
15 |
|
dia2dimlem12.v |
|
16 |
|
dia2dimlem12.uv |
|
17 |
13
|
simpld |
|
18 |
14
|
simpld |
|
19 |
15
|
simpld |
|
20 |
|
eqid |
|
21 |
20 2 4
|
hlatjcl |
|
22 |
17 18 19 21
|
syl3anc |
|
23 |
14
|
simprd |
|
24 |
15
|
simprd |
|
25 |
17
|
hllatd |
|
26 |
20 4
|
atbase |
|
27 |
18 26
|
syl |
|
28 |
20 4
|
atbase |
|
29 |
19 28
|
syl |
|
30 |
13
|
simprd |
|
31 |
20 5
|
lhpbase |
|
32 |
30 31
|
syl |
|
33 |
20 1 2
|
latjle12 |
|
34 |
25 27 29 32 33
|
syl13anc |
|
35 |
23 24 34
|
mpbi2and |
|
36 |
20 1 5 6 12
|
diass |
|
37 |
13 22 35 36
|
syl12anc |
|
38 |
37
|
sseld |
|
39 |
13
|
3ad2ant1 |
|
40 |
14
|
3ad2ant1 |
|
41 |
15
|
3ad2ant1 |
|
42 |
|
simp3 |
|
43 |
16
|
3ad2ant1 |
|
44 |
|
simp2 |
|
45 |
1 2 3 4 5 6 7 8 9 10 11 12 39 40 41 42 43 44
|
dia2dimlem11 |
|
46 |
45
|
3exp |
|
47 |
38 46
|
mpdd |
|
48 |
47
|
ssrdv |
|