Metamath Proof Explorer


Theorem dia2dimlem13

Description: Lemma for dia2dim . Eliminate U =/= V condition. (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem12.l ˙ = K
dia2dimlem12.j ˙ = join K
dia2dimlem12.m ˙ = meet K
dia2dimlem12.a A = Atoms K
dia2dimlem12.h H = LHyp K
dia2dimlem12.t T = LTrn K W
dia2dimlem12.r R = trL K W
dia2dimlem12.y Y = DVecA K W
dia2dimlem12.s S = LSubSp Y
dia2dimlem12.pl ˙ = LSSum Y
dia2dimlem12.n N = LSpan Y
dia2dimlem12.i I = DIsoA K W
dia2dimlem12.k φ K HL W H
dia2dimlem12.u φ U A U ˙ W
dia2dimlem12.v φ V A V ˙ W
Assertion dia2dimlem13 φ I U ˙ V I U ˙ I V

Proof

Step Hyp Ref Expression
1 dia2dimlem12.l ˙ = K
2 dia2dimlem12.j ˙ = join K
3 dia2dimlem12.m ˙ = meet K
4 dia2dimlem12.a A = Atoms K
5 dia2dimlem12.h H = LHyp K
6 dia2dimlem12.t T = LTrn K W
7 dia2dimlem12.r R = trL K W
8 dia2dimlem12.y Y = DVecA K W
9 dia2dimlem12.s S = LSubSp Y
10 dia2dimlem12.pl ˙ = LSSum Y
11 dia2dimlem12.n N = LSpan Y
12 dia2dimlem12.i I = DIsoA K W
13 dia2dimlem12.k φ K HL W H
14 dia2dimlem12.u φ U A U ˙ W
15 dia2dimlem12.v φ V A V ˙ W
16 oveq2 U = V U ˙ U = U ˙ V
17 16 adantl φ U = V U ˙ U = U ˙ V
18 13 simpld φ K HL
19 14 simpld φ U A
20 2 4 hlatjidm K HL U A U ˙ U = U
21 18 19 20 syl2anc φ U ˙ U = U
22 21 adantr φ U = V U ˙ U = U
23 17 22 eqtr3d φ U = V U ˙ V = U
24 23 fveq2d φ U = V I U ˙ V = I U
25 ssid I U I U
26 24 25 eqsstrdi φ U = V I U ˙ V I U
27 5 8 dvalvec K HL W H Y LVec
28 lveclmod Y LVec Y LMod
29 13 27 28 3syl φ Y LMod
30 eqid Base K = Base K
31 30 4 atbase U A U Base K
32 19 31 syl φ U Base K
33 14 simprd φ U ˙ W
34 30 1 5 8 12 9 dialss K HL W H U Base K U ˙ W I U S
35 13 32 33 34 syl12anc φ I U S
36 9 lsssubg Y LMod I U S I U SubGrp Y
37 29 35 36 syl2anc φ I U SubGrp Y
38 10 lsmidm I U SubGrp Y I U ˙ I U = I U
39 37 38 syl φ I U ˙ I U = I U
40 fveq2 U = V I U = I V
41 40 oveq2d U = V I U ˙ I U = I U ˙ I V
42 39 41 sylan9req φ U = V I U = I U ˙ I V
43 26 42 sseqtrd φ U = V I U ˙ V I U ˙ I V
44 13 adantr φ U V K HL W H
45 14 adantr φ U V U A U ˙ W
46 15 adantr φ U V V A V ˙ W
47 simpr φ U V U V
48 1 2 3 4 5 6 7 8 9 10 11 12 44 45 46 47 dia2dimlem12 φ U V I U ˙ V I U ˙ I V
49 43 48 pm2.61dane φ I U ˙ V I U ˙ I V