| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dia2dimlem12.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
dia2dimlem12.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
dia2dimlem12.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
dia2dimlem12.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
dia2dimlem12.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
dia2dimlem12.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
dia2dimlem12.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
dia2dimlem12.y |
⊢ 𝑌 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
dia2dimlem12.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑌 ) |
| 10 |
|
dia2dimlem12.pl |
⊢ ⊕ = ( LSSum ‘ 𝑌 ) |
| 11 |
|
dia2dimlem12.n |
⊢ 𝑁 = ( LSpan ‘ 𝑌 ) |
| 12 |
|
dia2dimlem12.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
| 13 |
|
dia2dimlem12.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 14 |
|
dia2dimlem12.u |
⊢ ( 𝜑 → ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) |
| 15 |
|
dia2dimlem12.v |
⊢ ( 𝜑 → ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) |
| 16 |
|
dia2dimlem12.uv |
⊢ ( 𝜑 → 𝑈 ≠ 𝑉 ) |
| 17 |
13
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
| 18 |
14
|
simpld |
⊢ ( 𝜑 → 𝑈 ∈ 𝐴 ) |
| 19 |
15
|
simpld |
⊢ ( 𝜑 → 𝑉 ∈ 𝐴 ) |
| 20 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 21 |
20 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) → ( 𝑈 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
| 22 |
17 18 19 21
|
syl3anc |
⊢ ( 𝜑 → ( 𝑈 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
| 23 |
14
|
simprd |
⊢ ( 𝜑 → 𝑈 ≤ 𝑊 ) |
| 24 |
15
|
simprd |
⊢ ( 𝜑 → 𝑉 ≤ 𝑊 ) |
| 25 |
17
|
hllatd |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
| 26 |
20 4
|
atbase |
⊢ ( 𝑈 ∈ 𝐴 → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
| 27 |
18 26
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
| 28 |
20 4
|
atbase |
⊢ ( 𝑉 ∈ 𝐴 → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
| 29 |
19 28
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
| 30 |
13
|
simprd |
⊢ ( 𝜑 → 𝑊 ∈ 𝐻 ) |
| 31 |
20 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
| 32 |
30 31
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
| 33 |
20 1 2
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑈 ≤ 𝑊 ∧ 𝑉 ≤ 𝑊 ) ↔ ( 𝑈 ∨ 𝑉 ) ≤ 𝑊 ) ) |
| 34 |
25 27 29 32 33
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑈 ≤ 𝑊 ∧ 𝑉 ≤ 𝑊 ) ↔ ( 𝑈 ∨ 𝑉 ) ≤ 𝑊 ) ) |
| 35 |
23 24 34
|
mpbi2and |
⊢ ( 𝜑 → ( 𝑈 ∨ 𝑉 ) ≤ 𝑊 ) |
| 36 |
20 1 5 6 12
|
diass |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑈 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑈 ∨ 𝑉 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑈 ∨ 𝑉 ) ) ⊆ 𝑇 ) |
| 37 |
13 22 35 36
|
syl12anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑈 ∨ 𝑉 ) ) ⊆ 𝑇 ) |
| 38 |
37
|
sseld |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐼 ‘ ( 𝑈 ∨ 𝑉 ) ) → 𝑓 ∈ 𝑇 ) ) |
| 39 |
13
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐼 ‘ ( 𝑈 ∨ 𝑉 ) ) ∧ 𝑓 ∈ 𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 40 |
14
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐼 ‘ ( 𝑈 ∨ 𝑉 ) ) ∧ 𝑓 ∈ 𝑇 ) → ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) |
| 41 |
15
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐼 ‘ ( 𝑈 ∨ 𝑉 ) ) ∧ 𝑓 ∈ 𝑇 ) → ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) |
| 42 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐼 ‘ ( 𝑈 ∨ 𝑉 ) ) ∧ 𝑓 ∈ 𝑇 ) → 𝑓 ∈ 𝑇 ) |
| 43 |
16
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐼 ‘ ( 𝑈 ∨ 𝑉 ) ) ∧ 𝑓 ∈ 𝑇 ) → 𝑈 ≠ 𝑉 ) |
| 44 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐼 ‘ ( 𝑈 ∨ 𝑉 ) ) ∧ 𝑓 ∈ 𝑇 ) → 𝑓 ∈ ( 𝐼 ‘ ( 𝑈 ∨ 𝑉 ) ) ) |
| 45 |
1 2 3 4 5 6 7 8 9 10 11 12 39 40 41 42 43 44
|
dia2dimlem11 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐼 ‘ ( 𝑈 ∨ 𝑉 ) ) ∧ 𝑓 ∈ 𝑇 ) → 𝑓 ∈ ( ( 𝐼 ‘ 𝑈 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ) |
| 46 |
45
|
3exp |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐼 ‘ ( 𝑈 ∨ 𝑉 ) ) → ( 𝑓 ∈ 𝑇 → 𝑓 ∈ ( ( 𝐼 ‘ 𝑈 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ) ) ) |
| 47 |
38 46
|
mpdd |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐼 ‘ ( 𝑈 ∨ 𝑉 ) ) → 𝑓 ∈ ( ( 𝐼 ‘ 𝑈 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ) ) |
| 48 |
47
|
ssrdv |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑈 ∨ 𝑉 ) ) ⊆ ( ( 𝐼 ‘ 𝑈 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ) |