Metamath Proof Explorer


Theorem dia2dimlem12

Description: Lemma for dia2dim . Obtain subset relation. (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem12.l = ( le ‘ 𝐾 )
dia2dimlem12.j = ( join ‘ 𝐾 )
dia2dimlem12.m = ( meet ‘ 𝐾 )
dia2dimlem12.a 𝐴 = ( Atoms ‘ 𝐾 )
dia2dimlem12.h 𝐻 = ( LHyp ‘ 𝐾 )
dia2dimlem12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dia2dimlem12.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
dia2dimlem12.y 𝑌 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
dia2dimlem12.s 𝑆 = ( LSubSp ‘ 𝑌 )
dia2dimlem12.pl = ( LSSum ‘ 𝑌 )
dia2dimlem12.n 𝑁 = ( LSpan ‘ 𝑌 )
dia2dimlem12.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
dia2dimlem12.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dia2dimlem12.u ( 𝜑 → ( 𝑈𝐴𝑈 𝑊 ) )
dia2dimlem12.v ( 𝜑 → ( 𝑉𝐴𝑉 𝑊 ) )
dia2dimlem12.uv ( 𝜑𝑈𝑉 )
Assertion dia2dimlem12 ( 𝜑 → ( 𝐼 ‘ ( 𝑈 𝑉 ) ) ⊆ ( ( 𝐼𝑈 ) ( 𝐼𝑉 ) ) )

Proof

Step Hyp Ref Expression
1 dia2dimlem12.l = ( le ‘ 𝐾 )
2 dia2dimlem12.j = ( join ‘ 𝐾 )
3 dia2dimlem12.m = ( meet ‘ 𝐾 )
4 dia2dimlem12.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dia2dimlem12.h 𝐻 = ( LHyp ‘ 𝐾 )
6 dia2dimlem12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 dia2dimlem12.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 dia2dimlem12.y 𝑌 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
9 dia2dimlem12.s 𝑆 = ( LSubSp ‘ 𝑌 )
10 dia2dimlem12.pl = ( LSSum ‘ 𝑌 )
11 dia2dimlem12.n 𝑁 = ( LSpan ‘ 𝑌 )
12 dia2dimlem12.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
13 dia2dimlem12.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 dia2dimlem12.u ( 𝜑 → ( 𝑈𝐴𝑈 𝑊 ) )
15 dia2dimlem12.v ( 𝜑 → ( 𝑉𝐴𝑉 𝑊 ) )
16 dia2dimlem12.uv ( 𝜑𝑈𝑉 )
17 13 simpld ( 𝜑𝐾 ∈ HL )
18 14 simpld ( 𝜑𝑈𝐴 )
19 15 simpld ( 𝜑𝑉𝐴 )
20 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
21 20 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑈𝐴𝑉𝐴 ) → ( 𝑈 𝑉 ) ∈ ( Base ‘ 𝐾 ) )
22 17 18 19 21 syl3anc ( 𝜑 → ( 𝑈 𝑉 ) ∈ ( Base ‘ 𝐾 ) )
23 14 simprd ( 𝜑𝑈 𝑊 )
24 15 simprd ( 𝜑𝑉 𝑊 )
25 17 hllatd ( 𝜑𝐾 ∈ Lat )
26 20 4 atbase ( 𝑈𝐴𝑈 ∈ ( Base ‘ 𝐾 ) )
27 18 26 syl ( 𝜑𝑈 ∈ ( Base ‘ 𝐾 ) )
28 20 4 atbase ( 𝑉𝐴𝑉 ∈ ( Base ‘ 𝐾 ) )
29 19 28 syl ( 𝜑𝑉 ∈ ( Base ‘ 𝐾 ) )
30 13 simprd ( 𝜑𝑊𝐻 )
31 20 5 lhpbase ( 𝑊𝐻𝑊 ∈ ( Base ‘ 𝐾 ) )
32 30 31 syl ( 𝜑𝑊 ∈ ( Base ‘ 𝐾 ) )
33 20 1 2 latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑈 𝑊𝑉 𝑊 ) ↔ ( 𝑈 𝑉 ) 𝑊 ) )
34 25 27 29 32 33 syl13anc ( 𝜑 → ( ( 𝑈 𝑊𝑉 𝑊 ) ↔ ( 𝑈 𝑉 ) 𝑊 ) )
35 23 24 34 mpbi2and ( 𝜑 → ( 𝑈 𝑉 ) 𝑊 )
36 20 1 5 6 12 diass ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑈 𝑉 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑈 𝑉 ) 𝑊 ) ) → ( 𝐼 ‘ ( 𝑈 𝑉 ) ) ⊆ 𝑇 )
37 13 22 35 36 syl12anc ( 𝜑 → ( 𝐼 ‘ ( 𝑈 𝑉 ) ) ⊆ 𝑇 )
38 37 sseld ( 𝜑 → ( 𝑓 ∈ ( 𝐼 ‘ ( 𝑈 𝑉 ) ) → 𝑓𝑇 ) )
39 13 3ad2ant1 ( ( 𝜑𝑓 ∈ ( 𝐼 ‘ ( 𝑈 𝑉 ) ) ∧ 𝑓𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
40 14 3ad2ant1 ( ( 𝜑𝑓 ∈ ( 𝐼 ‘ ( 𝑈 𝑉 ) ) ∧ 𝑓𝑇 ) → ( 𝑈𝐴𝑈 𝑊 ) )
41 15 3ad2ant1 ( ( 𝜑𝑓 ∈ ( 𝐼 ‘ ( 𝑈 𝑉 ) ) ∧ 𝑓𝑇 ) → ( 𝑉𝐴𝑉 𝑊 ) )
42 simp3 ( ( 𝜑𝑓 ∈ ( 𝐼 ‘ ( 𝑈 𝑉 ) ) ∧ 𝑓𝑇 ) → 𝑓𝑇 )
43 16 3ad2ant1 ( ( 𝜑𝑓 ∈ ( 𝐼 ‘ ( 𝑈 𝑉 ) ) ∧ 𝑓𝑇 ) → 𝑈𝑉 )
44 simp2 ( ( 𝜑𝑓 ∈ ( 𝐼 ‘ ( 𝑈 𝑉 ) ) ∧ 𝑓𝑇 ) → 𝑓 ∈ ( 𝐼 ‘ ( 𝑈 𝑉 ) ) )
45 1 2 3 4 5 6 7 8 9 10 11 12 39 40 41 42 43 44 dia2dimlem11 ( ( 𝜑𝑓 ∈ ( 𝐼 ‘ ( 𝑈 𝑉 ) ) ∧ 𝑓𝑇 ) → 𝑓 ∈ ( ( 𝐼𝑈 ) ( 𝐼𝑉 ) ) )
46 45 3exp ( 𝜑 → ( 𝑓 ∈ ( 𝐼 ‘ ( 𝑈 𝑉 ) ) → ( 𝑓𝑇𝑓 ∈ ( ( 𝐼𝑈 ) ( 𝐼𝑉 ) ) ) ) )
47 38 46 mpdd ( 𝜑 → ( 𝑓 ∈ ( 𝐼 ‘ ( 𝑈 𝑉 ) ) → 𝑓 ∈ ( ( 𝐼𝑈 ) ( 𝐼𝑉 ) ) ) )
48 47 ssrdv ( 𝜑 → ( 𝐼 ‘ ( 𝑈 𝑉 ) ) ⊆ ( ( 𝐼𝑈 ) ( 𝐼𝑉 ) ) )