Metamath Proof Explorer


Theorem dia2dim

Description: A two-dimensional subspace of partial vector space A is closed, or equivalently, the isomorphism of a join of two atoms is a subset of the subspace sum of the isomorphisms of each atom (and thus they are equal, as shown later for the full vector space H). (Contributed by NM, 9-Sep-2014)

Ref Expression
Hypotheses dia2dim.l = ( le ‘ 𝐾 )
dia2dim.j = ( join ‘ 𝐾 )
dia2dim.a 𝐴 = ( Atoms ‘ 𝐾 )
dia2dim.h 𝐻 = ( LHyp ‘ 𝐾 )
dia2dim.y 𝑌 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
dia2dim.pl = ( LSSum ‘ 𝑌 )
dia2dim.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
dia2dim.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dia2dim.u ( 𝜑 → ( 𝑈𝐴𝑈 𝑊 ) )
dia2dim.v ( 𝜑 → ( 𝑉𝐴𝑉 𝑊 ) )
Assertion dia2dim ( 𝜑 → ( 𝐼 ‘ ( 𝑈 𝑉 ) ) ⊆ ( ( 𝐼𝑈 ) ( 𝐼𝑉 ) ) )

Proof

Step Hyp Ref Expression
1 dia2dim.l = ( le ‘ 𝐾 )
2 dia2dim.j = ( join ‘ 𝐾 )
3 dia2dim.a 𝐴 = ( Atoms ‘ 𝐾 )
4 dia2dim.h 𝐻 = ( LHyp ‘ 𝐾 )
5 dia2dim.y 𝑌 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
6 dia2dim.pl = ( LSSum ‘ 𝑌 )
7 dia2dim.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
8 dia2dim.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 dia2dim.u ( 𝜑 → ( 𝑈𝐴𝑈 𝑊 ) )
10 dia2dim.v ( 𝜑 → ( 𝑉𝐴𝑉 𝑊 ) )
11 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
12 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
13 eqid ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
14 eqid ( LSubSp ‘ 𝑌 ) = ( LSubSp ‘ 𝑌 )
15 eqid ( LSpan ‘ 𝑌 ) = ( LSpan ‘ 𝑌 )
16 1 2 11 3 4 12 13 5 14 6 15 7 8 9 10 dia2dimlem13 ( 𝜑 → ( 𝐼 ‘ ( 𝑈 𝑉 ) ) ⊆ ( ( 𝐼𝑈 ) ( 𝐼𝑉 ) ) )