| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dia2dimlem11.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
dia2dimlem11.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
dia2dimlem11.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
dia2dimlem11.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
dia2dimlem11.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
dia2dimlem11.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
dia2dimlem11.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
dia2dimlem11.y |
⊢ 𝑌 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
dia2dimlem11.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑌 ) |
| 10 |
|
dia2dimlem11.pl |
⊢ ⊕ = ( LSSum ‘ 𝑌 ) |
| 11 |
|
dia2dimlem11.n |
⊢ 𝑁 = ( LSpan ‘ 𝑌 ) |
| 12 |
|
dia2dimlem11.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
| 13 |
|
dia2dimlem11.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 14 |
|
dia2dimlem11.u |
⊢ ( 𝜑 → ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) |
| 15 |
|
dia2dimlem11.v |
⊢ ( 𝜑 → ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) |
| 16 |
|
dia2dimlem11.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑇 ) |
| 17 |
|
dia2dimlem11.uv |
⊢ ( 𝜑 → 𝑈 ≠ 𝑉 ) |
| 18 |
|
dia2dimlem11.fe |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐼 ‘ ( 𝑈 ∨ 𝑉 ) ) ) |
| 19 |
1 2 4 5 6 7 8 9 11 12 13 14 15 16 18
|
dia2dimlem10 |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑈 ∨ 𝑉 ) ) |
| 20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 19 17
|
dia2dimlem9 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐼 ‘ 𝑈 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ) |