Description: Lemma for dia2dim . Convert ordering hypothesis on RF to subspace membership F e. ( I( U .\/ V ) ) . (Contributed by NM, 8-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dia2dimlem11.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
dia2dimlem11.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
dia2dimlem11.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
dia2dimlem11.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
dia2dimlem11.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | ||
dia2dimlem11.t | ⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | ||
dia2dimlem11.r | ⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | ||
dia2dimlem11.y | ⊢ 𝑌 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) | ||
dia2dimlem11.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑌 ) | ||
dia2dimlem11.pl | ⊢ ⊕ = ( LSSum ‘ 𝑌 ) | ||
dia2dimlem11.n | ⊢ 𝑁 = ( LSpan ‘ 𝑌 ) | ||
dia2dimlem11.i | ⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) | ||
dia2dimlem11.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | ||
dia2dimlem11.u | ⊢ ( 𝜑 → ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) | ||
dia2dimlem11.v | ⊢ ( 𝜑 → ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) | ||
dia2dimlem11.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑇 ) | ||
dia2dimlem11.uv | ⊢ ( 𝜑 → 𝑈 ≠ 𝑉 ) | ||
dia2dimlem11.fe | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐼 ‘ ( 𝑈 ∨ 𝑉 ) ) ) | ||
Assertion | dia2dimlem11 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐼 ‘ 𝑈 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dia2dimlem11.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
2 | dia2dimlem11.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
3 | dia2dimlem11.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
4 | dia2dimlem11.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
5 | dia2dimlem11.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
6 | dia2dimlem11.t | ⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | |
7 | dia2dimlem11.r | ⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) | |
8 | dia2dimlem11.y | ⊢ 𝑌 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) | |
9 | dia2dimlem11.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑌 ) | |
10 | dia2dimlem11.pl | ⊢ ⊕ = ( LSSum ‘ 𝑌 ) | |
11 | dia2dimlem11.n | ⊢ 𝑁 = ( LSpan ‘ 𝑌 ) | |
12 | dia2dimlem11.i | ⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) | |
13 | dia2dimlem11.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | |
14 | dia2dimlem11.u | ⊢ ( 𝜑 → ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) | |
15 | dia2dimlem11.v | ⊢ ( 𝜑 → ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) | |
16 | dia2dimlem11.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑇 ) | |
17 | dia2dimlem11.uv | ⊢ ( 𝜑 → 𝑈 ≠ 𝑉 ) | |
18 | dia2dimlem11.fe | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐼 ‘ ( 𝑈 ∨ 𝑉 ) ) ) | |
19 | 1 2 4 5 6 7 8 9 11 12 13 14 15 16 18 | dia2dimlem10 | ⊢ ( 𝜑 → ( 𝑅 ‘ 𝐹 ) ≤ ( 𝑈 ∨ 𝑉 ) ) |
20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 19 17 | dia2dimlem9 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐼 ‘ 𝑈 ) ⊕ ( 𝐼 ‘ 𝑉 ) ) ) |