Metamath Proof Explorer


Theorem dia2dimlem11

Description: Lemma for dia2dim . Convert ordering hypothesis on RF to subspace membership F e. ( I( U .\/ V ) ) . (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem11.l = ( le ‘ 𝐾 )
dia2dimlem11.j = ( join ‘ 𝐾 )
dia2dimlem11.m = ( meet ‘ 𝐾 )
dia2dimlem11.a 𝐴 = ( Atoms ‘ 𝐾 )
dia2dimlem11.h 𝐻 = ( LHyp ‘ 𝐾 )
dia2dimlem11.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dia2dimlem11.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
dia2dimlem11.y 𝑌 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
dia2dimlem11.s 𝑆 = ( LSubSp ‘ 𝑌 )
dia2dimlem11.pl = ( LSSum ‘ 𝑌 )
dia2dimlem11.n 𝑁 = ( LSpan ‘ 𝑌 )
dia2dimlem11.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
dia2dimlem11.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dia2dimlem11.u ( 𝜑 → ( 𝑈𝐴𝑈 𝑊 ) )
dia2dimlem11.v ( 𝜑 → ( 𝑉𝐴𝑉 𝑊 ) )
dia2dimlem11.f ( 𝜑𝐹𝑇 )
dia2dimlem11.uv ( 𝜑𝑈𝑉 )
dia2dimlem11.fe ( 𝜑𝐹 ∈ ( 𝐼 ‘ ( 𝑈 𝑉 ) ) )
Assertion dia2dimlem11 ( 𝜑𝐹 ∈ ( ( 𝐼𝑈 ) ( 𝐼𝑉 ) ) )

Proof

Step Hyp Ref Expression
1 dia2dimlem11.l = ( le ‘ 𝐾 )
2 dia2dimlem11.j = ( join ‘ 𝐾 )
3 dia2dimlem11.m = ( meet ‘ 𝐾 )
4 dia2dimlem11.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dia2dimlem11.h 𝐻 = ( LHyp ‘ 𝐾 )
6 dia2dimlem11.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 dia2dimlem11.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 dia2dimlem11.y 𝑌 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
9 dia2dimlem11.s 𝑆 = ( LSubSp ‘ 𝑌 )
10 dia2dimlem11.pl = ( LSSum ‘ 𝑌 )
11 dia2dimlem11.n 𝑁 = ( LSpan ‘ 𝑌 )
12 dia2dimlem11.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
13 dia2dimlem11.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 dia2dimlem11.u ( 𝜑 → ( 𝑈𝐴𝑈 𝑊 ) )
15 dia2dimlem11.v ( 𝜑 → ( 𝑉𝐴𝑉 𝑊 ) )
16 dia2dimlem11.f ( 𝜑𝐹𝑇 )
17 dia2dimlem11.uv ( 𝜑𝑈𝑉 )
18 dia2dimlem11.fe ( 𝜑𝐹 ∈ ( 𝐼 ‘ ( 𝑈 𝑉 ) ) )
19 1 2 4 5 6 7 8 9 11 12 13 14 15 16 18 dia2dimlem10 ( 𝜑 → ( 𝑅𝐹 ) ( 𝑈 𝑉 ) )
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 19 17 dia2dimlem9 ( 𝜑𝐹 ∈ ( ( 𝐼𝑈 ) ( 𝐼𝑉 ) ) )