Metamath Proof Explorer


Theorem dib2dim

Description: Extend dia2dim to partial isomorphism B. (Contributed by NM, 22-Sep-2014)

Ref Expression
Hypotheses dib2dim.l = ( le ‘ 𝐾 )
dib2dim.j = ( join ‘ 𝐾 )
dib2dim.a 𝐴 = ( Atoms ‘ 𝐾 )
dib2dim.h 𝐻 = ( LHyp ‘ 𝐾 )
dib2dim.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dib2dim.s = ( LSSum ‘ 𝑈 )
dib2dim.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
dib2dim.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dib2dim.p ( 𝜑 → ( 𝑃𝐴𝑃 𝑊 ) )
dib2dim.q ( 𝜑 → ( 𝑄𝐴𝑄 𝑊 ) )
Assertion dib2dim ( 𝜑 → ( 𝐼 ‘ ( 𝑃 𝑄 ) ) ⊆ ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 dib2dim.l = ( le ‘ 𝐾 )
2 dib2dim.j = ( join ‘ 𝐾 )
3 dib2dim.a 𝐴 = ( Atoms ‘ 𝐾 )
4 dib2dim.h 𝐻 = ( LHyp ‘ 𝐾 )
5 dib2dim.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
6 dib2dim.s = ( LSSum ‘ 𝑈 )
7 dib2dim.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
8 dib2dim.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 dib2dim.p ( 𝜑 → ( 𝑃𝐴𝑃 𝑊 ) )
10 dib2dim.q ( 𝜑 → ( 𝑄𝐴𝑄 𝑊 ) )
11 4 7 dibvalrel ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → Rel ( 𝐼 ‘ ( 𝑃 𝑄 ) ) )
12 8 11 syl ( 𝜑 → Rel ( 𝐼 ‘ ( 𝑃 𝑄 ) ) )
13 eqid ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
14 eqid ( LSSum ‘ ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSSum ‘ ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) )
15 eqid ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
16 1 2 3 4 13 14 15 8 9 10 dia2dim ( 𝜑 → ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 𝑄 ) ) ⊆ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( LSSum ‘ ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) )
17 16 sseld ( 𝜑 → ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 𝑄 ) ) → 𝑓 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( LSSum ‘ ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ) )
18 17 anim1d ( 𝜑 → ( ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 𝑄 ) ) ∧ 𝑠 = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) → ( 𝑓 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( LSSum ‘ ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ∧ 𝑠 = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) ) )
19 8 simpld ( 𝜑𝐾 ∈ HL )
20 9 simpld ( 𝜑𝑃𝐴 )
21 10 simpld ( 𝜑𝑄𝐴 )
22 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
23 22 2 3 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
24 19 20 21 23 syl3anc ( 𝜑 → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
25 9 simprd ( 𝜑𝑃 𝑊 )
26 10 simprd ( 𝜑𝑄 𝑊 )
27 19 hllatd ( 𝜑𝐾 ∈ Lat )
28 22 3 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
29 20 28 syl ( 𝜑𝑃 ∈ ( Base ‘ 𝐾 ) )
30 22 3 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
31 21 30 syl ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) )
32 8 simprd ( 𝜑𝑊𝐻 )
33 22 4 lhpbase ( 𝑊𝐻𝑊 ∈ ( Base ‘ 𝐾 ) )
34 32 33 syl ( 𝜑𝑊 ∈ ( Base ‘ 𝐾 ) )
35 22 1 2 latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 𝑊𝑄 𝑊 ) ↔ ( 𝑃 𝑄 ) 𝑊 ) )
36 27 29 31 34 35 syl13anc ( 𝜑 → ( ( 𝑃 𝑊𝑄 𝑊 ) ↔ ( 𝑃 𝑄 ) 𝑊 ) )
37 25 26 36 mpbi2and ( 𝜑 → ( 𝑃 𝑄 ) 𝑊 )
38 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
39 eqid ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) )
40 22 1 4 38 39 15 7 dibopelval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑄 ) 𝑊 ) ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼 ‘ ( 𝑃 𝑄 ) ) ↔ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 𝑄 ) ) ∧ 𝑠 = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) ) )
41 8 24 37 40 syl12anc ( 𝜑 → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼 ‘ ( 𝑃 𝑄 ) ) ↔ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 𝑄 ) ) ∧ 𝑠 = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) ) )
42 29 25 jca ( 𝜑 → ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 𝑊 ) )
43 31 26 jca ( 𝜑 → ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 𝑊 ) )
44 22 1 4 38 39 13 5 14 6 15 7 8 42 43 diblsmopel ( 𝜑 → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) ↔ ( 𝑓 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( LSSum ‘ ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ∧ 𝑠 = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) ) )
45 18 41 44 3imtr4d ( 𝜑 → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼 ‘ ( 𝑃 𝑄 ) ) → ⟨ 𝑓 , 𝑠 ⟩ ∈ ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) ) )
46 12 45 relssdv ( 𝜑 → ( 𝐼 ‘ ( 𝑃 𝑄 ) ) ⊆ ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) )