Metamath Proof Explorer


Theorem dibvalrel

Description: The value of partial isomorphism B is a relation. (Contributed by NM, 8-Mar-2014)

Ref Expression
Hypotheses dibcl.h H = LHyp K
dibcl.i I = DIsoB K W
Assertion dibvalrel K V W H Rel I X

Proof

Step Hyp Ref Expression
1 dibcl.h H = LHyp K
2 dibcl.i I = DIsoB K W
3 relxp Rel DIsoA K W X × h LTrn K W I Base K
4 eqid DIsoA K W = DIsoA K W
5 1 4 2 dibdiadm K V W H dom I = dom DIsoA K W
6 5 eleq2d K V W H X dom I X dom DIsoA K W
7 6 biimpa K V W H X dom I X dom DIsoA K W
8 eqid Base K = Base K
9 eqid LTrn K W = LTrn K W
10 eqid h LTrn K W I Base K = h LTrn K W I Base K
11 8 1 9 10 4 2 dibval K V W H X dom DIsoA K W I X = DIsoA K W X × h LTrn K W I Base K
12 7 11 syldan K V W H X dom I I X = DIsoA K W X × h LTrn K W I Base K
13 12 releqd K V W H X dom I Rel I X Rel DIsoA K W X × h LTrn K W I Base K
14 3 13 mpbiri K V W H X dom I Rel I X
15 rel0 Rel
16 ndmfv ¬ X dom I I X =
17 16 releqd ¬ X dom I Rel I X Rel
18 15 17 mpbiri ¬ X dom I Rel I X
19 18 adantl K V W H ¬ X dom I Rel I X
20 14 19 pm2.61dan K V W H Rel I X